Influences of Viscoelasticity and Streaming Potential on Surface Reaction Kinetics in Micro reactors

Document Type : Research Article

Authors

1 Chemical Engineering Department.Abadan Faculty of Petroleum Engineering. Petroleum University of Technology

2 Assistant Professor, University of Kurdistan

Abstract

The present study deals with investigating the influences of the streaming potential   and a non-linear rheology of the carrier fluid on mass transport and surface reactions in heterogeneous microreactors. To this end, the Phan-Thien and Tanner viscoelastic model is used to predict the non- linear behavior of the fluid. The governing equations are solved in a dimensionless form utilizing the finite-difference method for a non-uniform grid. The results show that the streaming potential effects are pronounced by increasing the ionic strength of the electrolyte and thickening the electric double layer. Upon magnifying these effects, the fluid velocity and, accordingly, the speed of analyte transfer to the downstream are lowered, thereby reducing the surface reaction rates. The streaming potential effects are so severe that may lead to a 100% increase in the saturation time at limiting conditions. Although the elasticity effects decrease the saturation time by increasing the fluid velocity near the wall, they are less important as compared to the streaming potential effects.

Keywords

Main Subjects


[1]  K.S. Elvira, X.C. i Solvas, R.C.R. Wootton, A.J. deMello, The past, present and potential for microfluidic reactor technology in chemical synthesis, Nat. Chem., 5(11) (2013) 905-915.
[2]  L. Martin, M. Meier, S.M. Lyons, R.V. Sit, W.F. Marzluff, S.R. Quake,  H.Y. Chang, Systematic reconstruction of RNA functional motifs with high-throughput microfluidics, Nat. Methods, 9(12) (2012) 1192-1194.
[3]  C. Lorthongpanich, L.F. Cheow, S. Balu, S.R. Quake, B.B. Knowles, W.F. Burkholder, D. Solter, D.M. Messerschmidt, Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos, Science 341 (2013) 1110-1112.
[4]  M. Sadeghi, A. Sadeghi, M.H. Saidi, Electroosmotic Flow in Hydrophobic Microchannels of General Cross Section, Journal of Fluids Engineering, Transactions of the ASME, 138(3) (2016) 031104.
[5]  W. Ehrfeld, V. Hessel, H. Löwe, Microreactors: New Technology for Modern Chemistry, Wiley, Weinheim, 2000.
[6]  S. Jomeh, M. Hoorfar, Numerical modeling of mass transport in microfluidic biomolecule-capturing devices equipped with reactive surfaces, Chem. Eng. J., 165(2) (2010) 668-677.
[7]  G. Taylor, Dispersion of Soluble Matter in Solvent Flowing Slowly through a Tube, Proc. R. Soc. London, Ser. A, 219(1137) (1953) 186-203.
[8]  R. Aris, On the Dispersion of a Solute in a Fluid Flowing through a Tube, Proc. R. Soc. London, Ser. A, 235 (1956) 67-77.
[9]  M. Pagitsas, A. Nadim, H. Brenner, Projection operator analysis of macrotransport processes, J. Chem. Phys., 84 (1986) 2801-2807.
[10] G.N. Mercer, A.J. Roberts, A Centre Manifold Description of Contaminant Dispersion in Channels with Varying Flow Properties, SIAM J. Appl. Math., 50 (1990) 1547-1565.
[11] R. Sankarasubramanian, W.N. Gill, Unsteady Convective Diffusion with Interphase Mass Transfer, Proc. R. Soc. London, Ser. A, 333 (1973) 115-132.
[12] R.W. Glaser, Antigen-antibody binding and mass transport by convection and diffusion to a surface: A two- dimensional computer model of binding and dissociation kinetics, Anal. Biochem., 213(1) (1993) 152-161.
[13] D. Dutta, Solutal transport in rectangular nanochannels under pressure-driven flow conditions, Microfluid Nanofluid, 10(3) (2011) 691-696.
[14] R. Hansen, H. Bruus, T.H. Callisen, O. Hassager, Transient convection, diffusion, and adsorption in surface-based biosensors, Langmuir, 28(19) (2012) 7557-7563.
[15] T. Gervais, K.F. Jensen, Mass transport and surface reactions in microfluidic systems, Chem. Eng. Sci., 61(4) (2006) 1102-1121.
[16] B. Roy, T. Das, T.K. Maiti, S. Chakraborty, Effect of fluidic transport on the reaction kinetics in lectin microarrays, Anal. Chim. Acta, 701(1) (2011) 6-14.
[17] H. Parsa, C.D. Chin, P. Mongkolwisetwara, B.W. Lee, J.J. Wang, S.K. Sia, Effect of volume- and time- based constraints on capture of analytes in microfluidic heterogeneous immunoassays, Lab Chip, 8(12) (2008) 2062-2070.
[18] D. Mocanu, A. Kolesnychenko, S. Aarts, A. Troost- Dejong, A. Pierik, E. Vossenaar, H. Stapert, Mass transfer effects on DNA hybridization in a flow-through microarray, J. Biotechnol., 139(2) (2009) 179-185.
[19] H. Helisaz, M.H. Saidi, A. Sadeghi, Reduction of production rate in Y-shaped microreactors in the presence of viscoelasticity, Anal. Chim. Acta, 990 (2017) 121-134.
[20] A. Sadeghi, Y. Kazemi, M.H. Saidi, Joule heating effects in electrokinetically driven flow through rectangular microchannels: An analytical approach, Nanoscale Microscale Thermophys. Eng., 17(3) (2013) 173-193.
[21] J.H. Masliyah, S. Bhattacharjee, Electrokinetic and Colloid Transport Phenomena, First ed., Wiley, New Jersey, 2006.
[22] A. Sadeghi, M.H. Saidi, Z. Waezi, S. Chakraborty, Variational formulation on Joule heating in combined electroosmotic and pressure driven microflows, Int. J. Heat Mass Transfer, 61(1) (2013) 254-265.
[23] C. Yang, D. Li, J.H. Masliyah, Modeling forced liquid convection in rectangular microchannels with electrokinetic effects, Int. J. Heat Mass Transfer, 41(24) (1998) 4229-4249.
[24] S.G. Kandlikar, S. Garimella, D. Li, S. Colin, M.R. King, Heat Transfer and Fluid Flow in Minichannels and Microchannels, Elsevier, Oxford, 2006.
[25] A. Anderson, J.C. Tannehill, R.H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Hemisphere, Washington, 1984.
[26] P.J. Oliveira, F.T. Pinho, Analytical solution for fully developed channel and pipe flow of Phan-Thien–Tanner fluids, J. Fluid Mech., 387 (1999) 271-280.
[27] G. Karniadakis, A. Beskok, N. Aluru, Microflows and Nanoflows, Fundamentals and Simulation, Springer, New York, 2005.
[28] A. Ahmadian-Yazdi, A. Sadeghi, M.H. Saidi, Electrokinetic mixing at high zeta potentials: Ionic size effects on cross stream diffusion, J. Colloid Interface Sci., 442 (2015) 8–14.
[29] A.E. Hoetink, T.J.C. Faes, K.R. Visser, R.M. Heethaar, On the flow dependency of the electrical conductivity of blood, IEEE Trans. Biomed. Eng., 51(7) (2004) 1251-1261.
[30] L. Campo-Deano,  R.P.A.  Dullens,  D.G.A.L. Aarts,  F.T.  Pinho,  M.S.N.   Oliveira,   Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system, Biomicrofluidics, 7 (2013) 034102.