[1] Y.L. Zhang, K. Vairavamoorthy, Analysis of transient flow in pipelines with fluid-structure interaction using method of lines, International Journal for Numerical Methods in Engineering, 63 (2005) 1446-1460.
[2] D. Ferràs, P.A. Manso, A.J. Schleiss, D.I.C. Covas, Fluid-structure interaction in straight pipelines: Friction coupling mechanisms, Computers & Structures, 175 (2016) 74-90.
[3] A. Keramat, A. Ahmadi, Axial wave propagation in viscoelastic bars using a new finite-element-based method, Journal of Engineering Mathematics, 77 (2012) 105-117.
[4] A. Bergant, Simpson, A.R., Pipeline column separation flow regimes, ASCE Journal of Hydraulic Engineering, 125 (1999) 835-848.
[5] a. Ahmadi, a. Keramat, Investigation of fluid-structure interaction with various types of junction coupling, Journal of Fluids and Structures, 26 (2010) 1123-1141.
[6] S.C. Tentarelli, Propagation of Noise and Vibration in Complex Hydraulic Tubing Systems, U.M.I. Dissertation Information Servive, 1990.
[7] M.H. Afshar, M. Rohani, Water hammer simulation by implicit method of characteristic, International Journal of Pressure Vessels and Piping, 85 (2008) 851-859.
[8] R. Zanganeh, A. Ahmadi, A. Keramat, Fluid– structure interaction with viscoelastic supports during waterhammer in a pipeline, Journal of Fluids and Structures, 54 (2015) 215-234.
[9] L. Zhang, S.A. Tijsseling, E.A. Vardy, Fsi Analysis of Liquid-Filled Pipes, Journal of Sound and Vibration, 224 (1999) 69-99.
[10] P.J. Lee, H.-F. Duan, M. Ghidaoui, B. Karney, Frequency domain analysis of pipe fluid transient behaviour, Journal of Hydraulic Research, 51 (2013) 609-622.
[11]H. Duan, Investigation of factors affecting transient pressure wave propagation and implications to transient based leak detection methods in pipeline systems, Hong Kong University of Science and Technology, 2011.
[12]A. D’souza, R. Oldenburger, Dynamic response of fluid lines, ASME Journal of Basic Engineering, 86 (1964) 589-598.
[13]C.A. de Jong, Analysis of pulsations and vibrations in fluid-filled pipe systems, TNO Institute of Applied Physics, 1994.
[14]E. Pestel, F.A. Leckie, Matrix methods in elastomechanics, McGraw-Hill, 1963.
[15]M.H. Chaudhry, Applied Hydraulic Transients, Springer New York, 2013.
[16]Q.S. Li, K. Yang, L. Zhang, N. Zhang, Frequency domain analysis of fluid-structure interaction in liquid-filled pipe systems by transfer matrix method, International Journal of Mechanical Sciences, 44 (2002) 2067-2087.
[17]H. Karimian Aliabadi, A. Ahmadi, A. Keramat, Study of Fluid Structure Interaction in viscoelastic pipe based on a new extension of Transfer Matrix Method, Modares Mechanical Engineering, 16 (2016) 330-338.
[18]E.M. Wahba, On the two-dimensional characteristics of laminar fluid transients in viscoelastic pipes, Journal of Fluids and Structures, 68 (2017) 113-124.
[19]D. Covas, I.S. Técnico, A.R. Pais, The dynamic effect of pipe-wall viscoelasticity in hydraulic transients . Part II — model development , calibration and verification, Journal of Hydraulic research, 43(1) (2005) 56-70.
[20]K. Weinerowska-bords, Accuracy and Parameter Estimation of Elastic and Viscoelastic Models of the Water Hammer, Task Quarterly, 11 (2007) 383-395.
[21] D. Covas, Stoianov, I., Mano, J., Ramos, H., Graham, N., and Maksimovic, C., The dynamic effect of pipe- wall viscoelasticity in hydraulic transients. Part I— Experimental analysis and creep characterization, Journal of Hydraulic Research, 42 (2004) 516-530.
[22] M. Prek, Analysis of wave propagation in fluid-filled viscoelastic pipes, Mechanical Systems and Signal Processing, 21 (2007) 1907-1916.
[23] H.-F. Duan, M. Ghidaoui, P.J. Lee, Y.-K. Tung, Unsteady friction and visco-elasticity in pipe fluid transients, Journal of Hydraulic Research, 48 (2010) 354-362.
[24] A. Keramat, A.S. Tijsseling, Q. Hou, A. Ahmadi, Fluid– structure interaction with pipe-wall viscoelasticity during water hammer, Journal of Fluids and Structures, 28 (2012) 434-455.
[25] S. Meniconi, B. Brunone, M. Ferrante, Water-hammer pressure waves interaction at cross-section changes in series in viscoelastic pipes, Journal of Fluids and Structures, 33 (2012) 44-58.
[26] S. Meniconi, B. Brunone, M. Ferrante, C. Massari, Energy dissipation and pressure decay during transients in viscoelastic pipes with an in-line valve, Journal of Fluids and Structures, 45 (2014) 235-249.
[27] J. Gong, A. Zecchin, M. Lambert, A. Simpson, Study on the frequency response function of viscoelastic pipelines using a multi-element Kelvin-Voigt model, Procedia Engineering, 119 (2015) 226-234.
[28] J.D. Ferry, J.D. Ferry, Viscoelastic Properties of Polymers, Wiley, 1980.
[29] A.S. Wineman, K.R. Rajagopal, Mechanical Response of Polymers: An Introduction, Cambridge University Press, 2000.
[30] A. Vardy, D. Fan, A. Tijsseling, Fluid-structure Interaction in a T-piece Pipe, Journal of Fluids and Structures, 10 (1996) 763-786.
[31] A. Keramat, A. Haghighi, Straightforward Transient- Based Approach for the Creep Function Determination in Viscoelastic Pipes, Journal of Hydraulic Engineering, (2014) 1-9.
[32] A.K. Soares, D.I. Covas, L.F. Reis, Analysis of PVC Pipe-Wall Viscoelasticity during Water Hammer, Journal of Hydraulic Engineering, 134 (2008) 1389-1394.
[33] L. Gaul, The influence of damping on waves and vibrations, Mechanical Systems and Signal Processing, 13 (1999) 1-30.
[34] E. Barkanov, W. Hufenbach, L. Kroll, Transient response analysis of systems with different damping models, Computer Methods in Applied Mechanics and Engineering, 192 (2003) 33-46.
[35] M. Prek, Wavelet analysis of sound signal in fluid-filled viscoelastic pipes, Journal of Fluids and Structures, 19 (2004) 63-72.