Experimental and Numerical Determination of Fracture Toughness in Gas Pipeline Steel of Grade API X65

Document Type : Research Article

Authors

Abstract

Plain strain fracture toughness is extremely important for failure assessment in high strength steels used in gas transmission pipelines. In the current research an experimental method based on three point bend test specimens was used to calculate fracture toughness of steel pipes of grade API X65 (with outer diameter of 1219 mm and wall thickness of 14.3 mm). A value of 308 MPa√m was found for fracture toughness of test material. Then a finite element solution for the test specimens was conducted using modified Gurson’s damage theory. In this model, the critical crack tip opening displacement was calculated from damaged elements in the early stage of crack growth. This model resulted in 297 MPa√m of fracture toughness. A comparison between the experimental and numerical results illustrated the fitness of common methods for determining fracture toughness of tested steel in ambient temperature. Due to the lack of experimental data for this steel, the obtained results can be used for safe performance of domestic gas pipelines made from API X65 steel. 
 

Keywords


[1] داغیانی، حمید رضا؛ شاکری، محمود، مقدمه ای بر مکانیک شکست اجسام “ ، دانشگاه صنعتی امیر کبیر،. تهران، 5353
رضایی یکتا، مرتضی،
[2] شبیه سازی کامپیوتری آزمایش کشش نمونه شیار دار فولادی API X65 با مدل گرسون “ ، پایان نامه کارشناسی ارشد، دانشکده مکانیک، . دانشگاه بیرجند، 53
[3] Hulka, K. ,“High Strength Large Diameter Pipe Plate from Standard Production to X80/X100”, http://www.us.cbmm,com.br/english/sources/techlib/info.
[4] Rothwell, A. B. ,“Fracture Propagation Control for Gas Pipelines: Past, Present and Future”, Pipeline Technology, Vol. 1, pp. 386-397, 2000.
[5] Standard Test Method for JIC. ,“A Measure of Fracture Toughness E813-89”, Annual Book of ASTM Standards, ASTM, 1991.
[6] Begley, J. A. Landes, J. D. ,“The J-Integral as a Fracture Criterion”, ASTM STP 514, American Society for Testing and Materials, Philadelphia, pp. 24-29, 1972.
[7] Landes, J. D. Begley, J. A. ,“The Effect of Specimen Geometry on JIC”, ASTM STP 514, American Society for Testing and Materials, Philadelphia, pp. 24-29, 1972.
[8] Beak, J. H. Kim, Y. P. Kim, C. M. Kim, W. S. Seok, C. S. ,“Effect of Pre-Strain on the Mechanical Properties of API X65 Pipe”, Material and Science A, 527, pp.1473–1479, 2010.
[9] Hashemi, S. H. ,“Correction factors for safe performance of API X65 pipeline steel”, International Journal of Pressure Vessels and Piping, 86, pp. 533–540, 2009.
[10] BS EN ISO 7448 ,“Fracture Mechanics Toughness Tests”, British Standard Institution, 1997.
[11] He, M. Li, F. ,“Modified Transformation Formulae Between Fracture Toughness and CTOD of Ductile Metals Considering Pre-Deformation Effects”, Engineering Fracture Mechanics, 77, pp. 2763-2771, 2010.
[12] Hibbit; Karlson; Sorensen ,“ABAQUS Version 6.4 User’s Manual”, 2005.
[13] Hashemi, S. H. Rezaei, M. Soleimani, V. ,“Local damage modeling of ductile fracture in API pipeline steels of grade X65 and X70”, Proceeding of ISME2011, The University of Birjand, 2011.
[14] Lee, J. S. Ju, J. B. Jang, J. I. Kim, W. S. Kwon, D. ,“Weld crack Assessment in Api X65 Pipeline:Failure Assessment Diagram With variation in representative Mechanical Properties”, Material Science and Engineering, pp. 122-130, 2004.
[15] Ju, J. B. Lee, J. S. Jang, J. I. ,“Fracture toughness anisotropy in a API steel line-pipe”, Materials Letters, 61, pp. 5178-5180, 2007.
[16] Oh, C. K. Kim, Y. J. Beak, Y. P. Kim, W. ,“A phenomenological Model of Ductile Fracture for API X65 steel”, International Journal of Mechanical Sciences, 49, pp. 1399–1412, 2007.
[17] Yang, Z. Z. Tian, W. Ma, Q. R. Li, Y. L. Li, J. K. Gao, J. Z. Zhang, H. B. “Mechanical Properties of Longitudinal, Submerged Arc Welded Steel Pipes Used for Gas Pipeline of Offshore Oil”, Metallurgical SINICA, 21, pp. 85-93, 2008.