[1] M. Ehsani, Y. Gao, S. Longo, K. Ebrahimi, Modern electric, hybrid electric, and fuel cell vehicles, CRC press, (2018).
[2] K. Chen, S. Wang, M. Song, L. Chen, Structure optimization of parallel air-cooled battery thermal management system, International Journal of Heat and Mass Transfer, 111 (2017) 943-952.
[3] Z. Lu, X. Meng, L. Wei, W. Hu, L. Zhang, L. Jin, Thermal management of densely-packed EV battery with forced air cooling strategies, Energy Procedia, 88 (2016) 682- 688.
[4] Z. Qian, Y. Li, Z. Rao, Thermal performance of lithium- ion battery thermal management system by using mini- channel cooling, Energy Conversion and Management, 126 (2016) 622-631.
[5] A. Greco, X. Jiang, A coupled thermal and electrochemical study of lithium-ion battery cooled by paraffin/porous- graphite-matrix composite, Journal of Power Sources, 315 (2016) 127-139.
[6] R. Zhao, J. Gu, J. Liu. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries, Journal of Power Sources, 273 (2015) 1089-1097.
[7] Z. Rao, Q. Wang, C. Huang, Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system, Applied Energy, 164 (2016) 659-669.
[8] Z. Rao, S. Wang, A review of power battery thermal energy management, Renewable and Sustainable Energy Reviews, 15 (2011) 4554-4571.
[9] S. Panchal, I. Dincer, M. Agelin-Chaab, R. Fraser, M. Fowler, Experimental temperature distributions in a prismatic lithium-ion battery at varying conditions, International Communications in Heat and Mass Transfer, 71 (2016) 35-43.
[10] S. Panchal, I. Dincer, M. Agelin-Chaab, R. Fraser, M. Fowler, Thermal modeling and validation of temperature distributions in a prismatic lithium-ion battery at different discharge rates and varying boundary conditions, Applied Thermal Engineering, 96 (2016) 190-199.
[11] K. Darcovich, D. MacNeil, S. Recoskie, B. Kenney. Coupled electrochemical and thermal battery models for thermal management of prismatic automotive cells, Applied Thermal Engineering, 133 (2018) 566-575.
[12] G.H. Kim, K. Smith, K.J. Lee, S. Santhanagopalan, A. Pesaran. Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales, Journal of the Electrochemical Society, 158 (2011) A955-A969.
[13] H. Gu, Mathematical analysis of a Zn/NiOOH cell, Journal of The Electrochemical Society, 130(1983) 1459-1464.
[14] K.H. Kwon, C.B. Shin, T.H. Kang, C.S. Kim. A two- dimensional modeling of a lithium-polymer battery, Journal of Power Sources, 163 (2006) 151-157.
[15] A.B. Nemati, Life investigation of Li-ion batteries used in electric vehicles, M.Sc. Thesis, Iran University of Science and Technology, 2016.
[16] N. Javani, I. Dincer, G. Naterer, B. Yilbas, Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles, International Journal of Heat and Mass Transfer, 72 (2014) 690-703.