[1] G. Bozzano, M. Dente, Shape and terminal velocity of single bubble motion: a novel approach, Computers & chemical engineering, 25(4-6) (2001) 571-576.
[2] H. Li, Z. Liu, J. Chen, B. Sun, Y. Guo, H. He, Correlation of aspect ratio and drag coefficient for hydrate-film- covered methane bubbles in water, Experimental Thermal and Fluid Science, 88 (2017) 554-565.
[3] G. Kelbaliyev, K. Ceylan, Development of new empirical equations for estimation of drag coefficient, shape deformation, and rising velocity of gas bubbles or liquid drops, Chemical Engineering Communications, 194(12) (2007) 1623-1637.
[4] A. Premlata, M.K. Tripathi, B. Karri, K.C. Sahu, Dynamics of an air bubble rising in a non-Newtonian liquid in the axisymmetric regime, Journal of Non- Newtonian Fluid Mechanics, 239 (2017) 53-61.
[5] B. Sun, Y. Guo, Z. Wang, X. Yang, P. Gong, J. Wang, N. Wang, Experimental study on the drag coefficient of single bubbles rising in static non-Newtonian fluids in wellbore, Journal of Natural Gas Science and Engineering, 26 (2015) 867-872.
[6] C.L. Henry, L. Parkinson, J.R. Ralston, V.S. Craig, A mobile gas− water interface in electrolyte solutions, The Journal of Physical Chemistry C, 112(39) (2008) 15094- 15097.
[7] R. Chen, F.-M. Wang, T.-J. Lin, Bubble wake dynamics of a single bubble rising in the freeboard of a two-dimensional liquid–solid fluidized bed, Chemical engineering science, 54(21) (1999) 4831-4838.
[8] W. Nock, S. Heaven, C. Banks, Mass transfer and gas– liquid interface properties of single CO2 bubbles rising in tap water, Chemical engineering science, 140 (2016) 171-178.
[9] Y. Zhang, Single bubble velocity profile: experiments and numerical simulation, McGill University, 2000.
[10] Y. Fu, Y. Liu, 3D bubble reconstruction using multiple cameras and space carving method, Measurement Science and Technology, 29(7) (2018) 075206.
[11] X. Yan, Y. Jia, L. Wang, Y. Cao, Drag coefficient fluctuation prediction of a single bubble rising in water, Chemical Engineering Journal, 316 (2017) 553-562.
[12] X. Yan, K. Zheng, Y. Jia, Z. Miao, L. Wang, Y. Cao, J. Liu, Drag coefficient prediction of a single bubble rising in liquids, Industrial & Engineering Chemistry Research, 57(15) (2018) 5385-5393.
[13] R.P. Chhabra, Bubbles, drops, and particles in non- Newtonian fluids, CRC press, 2006.
[14] M. Kemiha, X. Frank, S. Poncin, H.Z. Li, Origin of the negative wake behind a bubble rising in non-Newtonian fluids, Chemical Engineering Science, 61(12) (2006) 4041-4047.
[15] L. Zhang, C. Yang, Z.-S. Mao, An empirical correlation of drag coefficient for a single bubble rising in non- Newtonian liquids, Industrial & Engineering Chemistry Research, 47(23) (2008) 9767-9772.
[16] X. Frank, J.-C. Charpentier, Y. Ma, N. Midoux, H.Z. Li, A multiscale approach for modeling bubbles rising in non-Newtonian fluids, Industrial & Engineering Chemistry Research, 51(4) (2011) 2084-2093.
[17] W.Y. Fan, X.H. Yin, Fractal Approach to Bubble Rising Dynamics in Non-Newtonian Fluids, in: Advanced Materials Research, Trans Tech Publ 889-890, (2014) 559-562.
[18] X. Xu, J. Zhang, F. Liu, X. Wang, W. Wei, Z. Liu, Rising behavior of single bubble in infinite stagnant non- Newtonian liquids, International Journal of Multiphase Flow, 95 (2017) 84-90.
[19] M. Pang, M. Lu, Numerical study on dynamics of single bubble rising in shear-thinning power-law fluid in different gravity environment, Vacuum, 153 (2018) 101- 111.
[20] M. Dziubinski, M. Orczykowska, P. Budzynski, Comments on bubble rising velocity in non-Newtonian liquids, Chemical Engineering Science, 58(11) (2003) 2441-2443
[21] T.-J. Lin, G.-M. Lin, An experimental study on flow structures of a single bubble rising in a shear-thinning viscoelastic fluid with a new measurement technique, International journal of multiphase flow, 2(31) (2005) 239-252.
[22] M. Ohta, Y. Yoshida, M. Sussman, A computational study of the dynamic motion of a bubble rising in Carreau model fluids, Fluid dynamics research, 42(2) (2009) 025501.
[23] L. Zhang, C. Yang, Z.-S. Mao, Numerical simulation of a bubble rising in shear-thinning fluids, Journal of Non-Newtonian Fluid Mechanics, 165(11-12) (2010) 555-567.
[24] W. Fan, X. Yin, A laser imaging-LDV coupling measurement of single bubble forming and rising in shear-thinning fluid, Journal of Thermal Science, 23(3) (2014) 233-238.
[25] S.D. Dhole, R.P. Chhabra, V. Eswaran, Drag of a spherical bubble rising in power law fluids at intermediate Reynolds numbers, Industrial & engineering chemistry research, 46(3) (2007) 939-946.
[26] F. Wenyuan, M. Youguang, J. Shaokun, Y. Ke, L. Huaizhi, An experimental investigation for bubble rising in non-Newtonian fluids and empirical correlation of drag coefficient, Journal of Fluids Engineering, 132(2) (2010) 021305.
[27] S. Li, Y. Ma, S. Jiang, T. Fu, C. Zhu, H.Z. Li, The drag coefficient and the shape for a single bubble rising in non-Newtonian fluids, Journal of Fluids Engineering, 134(8) (2012) 084501.
[28] W. Sun, C. Zhu, T. Fu, Y. Ma, H. Li, 3D Simulation of Interaction and Drag Coefficient of Bubbles Continuously Rising with Equilateral Triangle Arrangement in Shear- Thinning Fluids, International Journal of Multiphase Flow, (2018) In Press
[29] J. Araújo, J. Miranda, J. Campos, Taylor bubbles rising through flowing non-Newtonian inelastic fluids, Journal of Non-Newtonian Fluid Mechanics, 245 (2017) 49-66.
[30] C. Patrascu, I.L. Omocea, C. Balan, Experimental investigation of a liquid meniscus formed by close colliding viscous and viscoelastic jets, Proceeding of the romanian academy series A-Mathematics physics technical sciences information sciences, 19(3) (2018) 483-488.
[31] W.L. Shew, J.-F. Pinton, Viscoelastic effects on the dynamics of a rising bubble, Journal of Statistical Mechanics: Theory and Experiment, 2006(01) (2006) P01009.
[32] R. Sousa, M. Riethmuller, A.M. Pinto, J. Campos, Flow around individual Taylor bubbles rising in stagnant polyacrylamide (PAA) solutions, Journal of non- newtonian fluid mechanics, 135(1) (2006) 16-31.
[33] J. Liu, C. Zhu, T. Fu, Y. Ma, H. Li, Numerical simulation of the interactions between three equal-interval parallel bubbles rising in non-Newtonian fluids, Chemical engineering science, 93 (2013) 55-66.
[34] M.K. Tripathi, K.C. Sahu, R. Govindarajan, Dynamics of an initially spherical bubble rising in quiescent liquid, Nature communications, 6 (2015) 6268
[35] R. Clift, J.R. Grace, M.E. Weber, Bubbles, drops, and particles, Courier Corporation, 2005.
[36] H.D. Mendelson, The prediction of bubble terminal velocities from wave theory, AIChE Journal, 13(2) (1967) 250-253.
[37] M. Jamialahmadi, H. Müller-Steinhagen, Effect of alcohol, organic acid and potassium chloride concentration on bubble size, bubble rise velocity and gas hold-up in bubble columns, The Chemical Engineering Journal, 50(1) (1992) 47-56.
[38] D. Legendre, R. Zenit, J.R. Velez-Cordero, On the deformation of gas bubbles in liquids, Physics of Fluids, 24(4) (2012) 043303.
[39] L. Böhm, T. Kurita, K. Kimura, M. Kraume, Rising behaviour of single bubbles in narrow rectangular channels in Newtonian and non-Newtonian liquids, International Journal of Multiphase Flow, 65 (2014) 11-23.
[40] R. Clift, W. Gauvin, Motion of entrained particles in gas streams, The Canadian Journal of Chemical Engineering, 49(4) (1971) 439-448.
[41] K. Dewsbury, D. Karamanev, A. Margaritis, Hydrodynamic characteristics of free rise of light solid particles and gas bubbles in non-Newtonian liquids, Chemical engineering science, 54(21) (1999) 4825-4830.