Document Type : Research Article
Authors
School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran.
Abstract
Keywords
Main Subjects
[1] A. Asadi, M. Rahnama, M.A. Talebizadeh, H.B. Harandi, Performance optimization of multi- effect distillation-thermal vapor compression desalination using genetic algorithm, Amirkabir Journal of Mechanical Engineering, 50(2) (2018) 161-170(in Persian).
[2] S.M.A. Hosseini, F. Sarhaddi, Performance Assessment of a Humidification- Dehumidification Desalination Unit Connected to Photovoltaic Thermal Collectors, Amirkabir Journal of Mechanical Engineering, 49(3) (2017) 653-662(in Persian).
[3] A. Nourbakhsh, S. Jahantighi, A. Mohammadi, Simulation of heat transfer in shutdown time of engine by conjugate heat transfer, Amirkabir Journal of Mechanical Engineering, 0 (2018) (in Persian).
[4] N. Miljkovic, R. Enright, E.N. Wang, Modeling and Optimization of Superhydrophobic Condensation, J. Heat Transfer, 135(11) (2013) 111004.
[5] J.B. Boreyko, Y. Zhao, C.-H. Chen, Planar jumping-drop thermal diodes, Appl. Phys. Lett., 99(23) (2011) 234105--234103.
[6] E. Schmidt, W. Schurig, W. Sellschopp, Versuche über die Kondensation von Wasserdampf in Film- und Tropfenform, Technische Mechanik und Thermodynamik, 1(2) (1930) 53-63.
[7] N. Miljkovic, Development and characterization of micro/nano structured surfaces for enhanced condensation, Massachusetts Institute of Technology, 2013.
[8] S.B. Barati, N. Pionnier, J.-C. Pinoli, S. Valette, Y. Gavet, Investigation spatial distribution of droplets and the percentage of surface coverage during dropwise condensation, International Journal of Thermal Sciences, 124 (2018) 356- 365.
[9] Q. Peng, L. Jia, C. Dang, X. Zhang, Q. Huang, Experimental investigation on flow condensation of R141b with CuO nanoparticles in a vertical circular tube, Applied Thermal Engineering, 129 (2018) 812-821.
[10]H.R. Talesh Bahrami, S. Zareie, H. Saffari, A numerical analysis of dropwise condensation of nanofluid on an inclined plate, Modares Mechanical Engineering, 17(3) (2017) 105- 114.
[11]S. Zarei, H.R. Talesh Bahrami, H. Saffari, Effects of geometry and dimension of micro/ nano-structures on the heat transfer in dropwise condensation: A theoretical study, Applied Thermal Engineering 137 (2018) 440-450.
[12]H.R. Talesh Bahrami, B. Ahmadi, H. Saffari, Optimal condition for fabricating superhydrophobic copper surfaces with controlled oxidation and modification processes, Materials Letters, 189 (2017) 62-65.
[13]H.R. Talesh Bahrami, B. Ahmadi, H. Saffari, Preparing superhydrophobic copper surfaces with rose petal or lotus leaf property using a simple etching approach, Materials Research Express, 4(5) (2017).
[14] E. Matei, C. Busuioc, A. Evanghelidis,
[15]G.V.G. Mercado, C.J. González, M.I. Oliva, V. Brunetti, G.A. Eimer, Morphology of copper deposits obtained by metallic electrodeposition, Procedia Materials Science, 8 (2015) 635-640.
[16]W. Xi, Z. Qiao, C. Zhu, A. Jia, M. Li, The preparation of lotus-like super-hydrophobic copper surfaces by electroplating, Applied Surface Science, 255(9) (2009) 4836-4839.
[17]Z. Chen, L. Hao, A. Chen, Q. Song, C. Chen, A rapid one-step process for fabrication of superhydrophobic surface by electrodeposition method, Electrochimica Acta, 59 (2012) 168- 171.
[18]K. Rurack, R. Martínez-Máñez, The supramolecular chemistry of organic-inorganic hybrid materials, John Wiley & Sons, 2010.
[19] A. Das, H. Kilty, P. Marto, G. Andeen, A. Kumar, The use of an organic self-assembled monolayer coating to promote dropwise condensation of steam on horizontal tubes, Journal of heat transfer, 122(2) (2000) 278- 286.
[20] C.-H. Chen, Q. Cai, C. Tsai, C.-L. Chen, G. Xiong, Y. Yu, Z. Ren, Dropwise condensation on superhydrophobic surfaces with two-tier roughness, Applied Physics Letters, 90(17) (2007) 173108.
[21] A.K. Das, H.P. Kilty, P.J. Marto, G.B. Andeen, Kumar, The Use of an Organic Self- Assembled Monolayer Coating to Promote Dropwise Condensation of Steam on Horizontal Tubes, Journal of Heat Transfer 122(2) (2000) 278-286.
[22] Q. Yang, A. Gu, Dropwise Condensation on SAM and Electroless Composite Coating Surfaces, Journal of chemical engineering of Japan, 39(8) (2006) 826-830.
[23] L. Yin, Y. Wang, J. Ding, Q. Wang, Q. Chen, Water condensation on superhydrophobic aluminum surfaces with different low-surface- energy coatings, Applied Surface Science, 258(8) (2012) 4063-4068.
[24] D. Torresin, M.K. Tiwari, D. Del Col, D. Poulikakos, Flow condensation on copper- based nanotextured superhydrophobic surfaces, Langmuir, 29(2) (2013) 840-848.
[25] L. Chen, S. Liang, R. Yan, Y. Cheng, X. Huai, S. Chen, n-Octadecanethiol self-assembled monolayer coating with microscopic roughness for dropwise condensation of steam, Journal of Thermal Science, 18(2) (2009) 160-165.
[26] J. Reid, Copper electrodeposition: principles and recent progress, Japanese Journal of Applied Physics, 40(4S) (2001) 2650.
[27] K.W. Hwang, D. Kim, H. Jo, H.S. Park, K. Moriyama, M.H. Kim, Effects of heat flux on dropwise condensation on a superhydrophobic surface, J. Mech. Sci. Technol., 30(5) (2016) 2141--2149.
[28] ImageJ, in, 2017.
[29]M. Kedzierski, J. Worthington III, Design and machining of copper specimens with micro holes for accurate heat transfer measurements, EXPERIMENTAL HEAT TRANSFER An International Journal, 6(4) (1993) 329-344.
[30]P. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill Education, 2002.
[31]H.Y. Erbil, A.L. Demirel, Y. Avci, O. Mert, Transformation of a simple plastic into a superhydrophobic surface, Science, 299(5611) (2003) 1377-1380.
[32]A. Lafuma, D. Quéré, Superhydrophobic states, Nature Materials, 2(7) (2003) 457.
[33]A. Cassie, S. Baxter, Wettability of porous surfaces, Transactions of the Faraday society, 40 (1944) 546-551.
[34] N.D. Nikolić, L.J. Pavlović, M.G. Pavlović, K.I. Popov, Effect of temperature on the electrodeposition of disperse copper deposits, Journal of the Serbian Chemical Society, 72(12) (2007) 1369-1381.
[35]G.A. O’neill, J.W. Westwater, Dropwise condensation of steam on electroplated silver surfaces, International Journal of Heat and Mass Transfer, 27(9) (1984) 1539-1549.
[36]D. Barker, F.C. Walsh, Applications of Faraday’s Laws of Electrolysis in Metal Finishing, Transactions of the IMF, 69(4) (1991) 158-162.
[37] N. Miljkovic, R. Enright, Y. Nam, K. Lopez,
N. Dou, J. Sack, E.N. Wang, Jumping- droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces, Nano letters, 13(1) (2012) 179-187.
[38] M. Sbragaglia, A.M. Peters, C. Pirat, B.M.Borkent, R.G. Lammertink, M. Wessling, D. Lohse, Spontaneous breakdown of superhydrophobicity, Physical review letters, 99(15) (2007) 156001.
[39] J. Cheng,A. Vandadi, C.-L. Chen, Condensation heat transfer on two-tier superhydrophobic surfaces, Applied Physics Letters, 101(13) (2012) 131909.
[40] N. Miljkovic, D.J. Preston, R. Enright, E.N. Wang, Electric-Field-Enhanced Condensation on Superhydrophobic Nanostructured Surfaces, ACS Nano, 7(12) (2013) 11043-11054.
[41] W.L.B. A. Pridgeon, Studies in Evaporator Design. V-Effect of Surface Conditions, Industrial and Engineering Chemistry 16(5) (1924) 474–478.
[42] N.Y. M. Izumi, T. Shinmura, Y. Isobe, S. Ohtani, J.W. Westwater, Drop and filmwise condensation on horizontally scratched rough surfaces, Heat Transfer–Japanese Research, 18 (1989).
[43] R. Yun, J. Heo, Y. Kim, Effects of surface roughness and tube materials on the filmwise condensation heat transfer coefficient at low heat transfer rates, Int. Commun. Heat Mass Transfer, 33(4) (2006) 445-450.
[44] H.R. Talesh Bahrami, H. Saffari, Theoretical study of stable dropwise condensation on an inclined micro/nano-structured tube, Int. J. Refrig, 75 (2017) 141-154.
[45] H. Saffari, B. Sohrabi, M.R. Noori, H.R.T. Bahrami, Optimal condition for fabricating superhydrophobic Aluminum surfaces with controlled anodizing processes, Applied Surface Science, 435 (2018) 1322-1328.