[1] L. Derafa, A. Benallegue, L. Fridman, Super twisting control algorithm for the attitude tracking of a four rotors UAV. Journal of the Franklin Institute, 349(2) (2012) 685-699.
[2] H. Kim, B.K. Kim, Online Minimum-Energy Trajectory Planning and Control on a Straight-Line Path for Three-Wheeled Omnidirectional Mobile Robots. IEEE Trans. Industrial Electronics, 61(9) (2014) 4771-4779.
[3] Y. Bestaoui, An optimal velocity generation of a rear wheel drive tricycle along a specified path, in: American Control Conference, 2000. Proceedings of the 2000, IEEE, )2000(, pp. 2907-2911.
[4] J. Kim, H. Yeom, F.C. Park, Y.I. Park, M. Kim, On the energy efficiency of CVT-based mobile robots, in: Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on, IEEE, (2000), pp. 1539-1544.
[5] E.S. Sergaki, G.S. Stavrakakis, A.D. Pouliezos, Optimal robot speed trajectory by minimization of the actuator motor electromechanical losses. Journal of Intelligent and Robotic Systems, 33(2) (2002) 187.702
[6] M. Haddad, W. Khalil, H. Lehtihet, Trajectory planning of unicycle mobile robots with a trapezoidalvelocity constraint. IEEE Transactions on Robotics, .269-459 )0102( )5(62
[7] C.H. Kim, B.K.J.J.o.I. Kim, Minimum-energy translational trajectory generation for differentialdriven wheeled mobile robots. Journal of Intelligent and Robotic Systems, 49(4) (2007) 367-383.
[8] Y .Mei, Y.-H. Lu, Y.C. Hu, C.G. Lee, Deployment strategy for mobile robots with energy and timing constraints, in: Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, IEEE, (2005), pp. 2816-2821.
[9] G. Doukas ,K.J.I.T.o.I.E. Thramboulidis, A real-timelinux-based framework for model-driven engineering in control and automation. IEEE Transactions on Industrial Electronics, 58(3) (2011) 914-924.
[10] C. Leng, Q. Cao, Y.J.I.J.o.A.R.S. Huang, A motion planning method for omnidirectional mobile robot based on the anisotropic characteristics. International Journal of Advanced Robotic Systems, 5(4) (2008) 45.
[11] C.-C. Tsai, H.-C. Huang, C.-K.J.I.T.o.I.E. Chan, Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigation. IEEE Transactions on Industrial Electronics, 58(10) (2011) 4813-4821.
[12] J. Wu, R.L .Williams, J.J.J.o.d.s. Lew, measurement,, control, Velocity and acceleration cones for kinematic and dynamic constraints on omni-directional mobile robots. Journal of dynamic systems, measurement, and control, 128(4) (2006) 788-799.
[13] S.X. Yang, A. Zhu, G. Yuan, M.Q.-H.J.I.T.o.I.E. Meng, A bioinspired neurodynamics-based approach to tracking control of mobile robots. IEEE Transactions on Industrial Electronics, 59(8) (2012) 3211-3220.
[14] M.G. Earl, R. D’andrea, Iterative MILP methods for vehicle-control problems. IEEE Transactions on Robotics, 21(6) (2005) 1158-1167.
[15] Y. Mei, Y.-H. Lu, Y.C. Hu, C.G. Lee, Energy-efficient motion planning for mobile robots, in: Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on, IEEE, 2004, pp. 4344.4349.
[16] A. Tayebi, S. McGilvray, Attitude stabilization of a VTOL quadrotor aircraft. IEEE Transactions on control systems technology, 14(3) (2006) 562-571.
[17] Y. Morel, A. Leonessa, Direct adaptive tracking control of quadrotor aerial vehicles, in: ASME 2006 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, (2006), pp. 155-.161
[18] G. Hoffmann, D.G. Rajnarayan, S.L. Waslander,
D. Dostal, J.S. Jang, C.J. Tomlin, The Stanford testbed of autonomous rotorcraft for multi agent control (STARMAC), in: Digital Avionics Systems Conference, 2004. DASC 04. The 23rd, IEEE, (2004), pp .12 .E. 14-121.
[19] A.Ö. Kivrak, Design of control systems for a quadrotor flight vehicle equipped with inertial sensors, Master’s Thesis, Atilim University, 2006.
[20] A.A. Mian, W. Daobo, Modeling and backstepping- based nonlinear control strategy for a 6 DOF quadrotor
helicopter. Chinese Journal of Aeronautics, 21(3) (2008) 261-268.
[21] A. Soumelidis, P. Gáspár, G. Regula, B. Lantos, Control of an experimental mini quad-rotor UAV, in: Control and Automation, 2008 16th Mediterranean Conference on, IEEE, (2008), pp. 1252-1257.
[22] A. Benallegue, A. Mokhtari, L. Fridman, Feedback linearization and high order sliding mode observer for a quadrotor UAV, in: Variable Structure Systems, 2006. VSS’06. International Workshop on, IEEE,
(2006), pp. 365-372.
[23] E. Davoodi, M. Mazare, P. Safarpour, Dynamic modeling and control of a quadrotor using nonlinear approaches based on MEMS sensors’ experimental data. Modares Mechanical Engineering, 16(10) (2017) 31-41 (in presian).
[24] L. Luque-Vega, B. Castillo-Toledo, A. G. Loukianov, Robust block second order sliding mode control for a quadrotor. Journal of the Franklin Institute, 349(2) (2012) 719-739.
[25] V. Nekoukar, A. Erfanian, Systems, Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems. Fuzzy Sets and Systems, 179(1) (2011) 34-49.
[26] L. Wu, C. Wang, Q. Zeng, Observer-based sliding mode control for a class of uncertain nonlinear neutral delay systems. Journal of the Franklin Institute, 345(3) (2008) 233-253.
[27] T. Dierks, S. Jagannathan, Output feedback control of a quadrotor UAV using neural networks. IEEE transactions on neural networks, 21(1) (2010) 50-66.
[28] N. Guenard, T. Hamel ,R.J.I.T.o.R. Mahony, A practical visual servo control for an unmanned aerial vehicle. IEEE Transactions on Robotics, 24(2) (2008) 331-340.
[29] F. Kendoul, I. Fantoni, K.J.R. Nonami, A. Systems, Optic flow-based vision system for autonomous 3D localization and control of small aerial vehicles. Robotics and Autonomous Systems, 57(6-7) (2009) 591-602.
[30] K.M. Zemalache, H.J.A.S.C. Maaref, Controlling a drone: Comparison between a based model method and a fuzzy inference system. Applied Soft Computing, 9(2) (2009) 553-562.
[31] T. Bresciani, Modelling, identification and control of a quadrotor helicopter. Master’s Thesis, 2008.
[32] C.H. Kim, B.K. Kim, Minimum-energy motion planning for differential-driven wheeled mobile robots, in: Motion Planning. Motion Planning, InTech, 2008.