Document Type : Research Article
Authors
1 Mechanical faculty- Sahand university- Tabriz- Iran
2 Mechanical Engineering / Sahand University of Technology
3 Research Center for Advance Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran
4 Assistant professor, School of mechanical engineering, University of Tehran
Abstract
Keywords
Main Subjects
S. Hazar, G. Anlas, Z. Moumni, Evaluation of transformation region around crack tip in shape memory alloys, International Journal of Fracture, 197(1)(2016)99-110.
G. Wang, A finite element analysis of evolution of stress–strain and martensite transformation in front of a notch in shape memory alloy NiTi, Materials Science and Engineering: A, 460(1) (2007) 383-391.
G. Wang, Effect of martensite transformation on fracture behavior of shape memory alloy NiTi in a notched specimen, International Journal of Fracture, 146(1)(2007) 93- 104.
T. Baxevanis, Y. Chemisky, D. Lagoudas, Finite element analysis of the plane strain crack-tip mechanical fields in pseudoelastic shape memory alloys, Smart Materials and Structures, 21(9) (2012) 094012.
A. McKelvey, R. Ritchie, Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material, Journal of Biomedical Materials Research, 47(3) (1999) 301-308.
S. Robertson, Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: A fracture mechanics and synchrotron X-ray microdiffraction analysis, Acta Materialia, 55(18) (2007) 6198-6207.
S. Robertson, R. Ritchie, A fracture‐mechanics‐based approach to fracture control in biomedical devices manufactured from superelastic Nitinol tube, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 84(1) (2008) 26-33.
S. Gollerthan, Direct physical evidence for the backtransformation of stress-induced martensite in the vicinity of cracks in pseudoelastic NiTi shape memory alloys, Acta materialia, 57(19) (2009) 5892-5897.
M. Daymond, Strain and texture evolution during mechanical loading of a crack tip in martensitic shapememory NiTi, Acta Materialia, 55(11) (2007) 3929-3942.
Y. You, Y. Zhang, Z. Moumni, G. Anlas, W. Zhang, Effect of the thermomechanical coupling on fatigue crack propagation in NiTi shape memory alloys, Materials Science and Engineering: A, 685(1) (2017) 50-56.
C. Maletta, E. Sgambitterra, F. Niccoli, Temperature dependent fracture properties of shape memory alloys: novel findings and a comprehensive model. Scientific reports, 6(1) (2016) 17.