حل عددی جریان چندلایه هسته- حلقه با روان‌کار ویسکوپلاستیک به روش المان طیفی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو/ دانشگاه یزد

2 دانشگاه یزد

3 هیات علمی-دانشگاه یزد

4 استاد یار، دانشکده مهندسی مکانیک دانشگاه تهران

5 استاد یار، دانشگاه خلیج فارس

چکیده

هدف پژوهش حاضر شبیه‌سازی جریان چندلایه از نوع هسته- حلقه درون یک کانال دوبعدی است که در آن سیال نیوتنی در هسته قرار گرفته و بوسیله سیال ویسکوپلاستیک از نوع نظ میافته بینگهام به عنوان روا‌‌ن‌کار احاطه شده است. این شبیه‌سازی بر اساس تکنیک حجم سیال انجام گرفته است. معادلات جریان و غلظت، به روش المان طیفی گسسته سازی مکانی شده‌اند. طرح تصحیح سرعت، به عنوان یک الگوریتم مرتبه بالا، برای جداسازی متغیرهای سرعت و فشار برای جریان دو فاز با روان‌کار ویسکوپلاستیک، توسعه داده شده است. اعمال فرضیات جریان توسعه یافته، منجر به معادله غیرخطی در ناحیه پلاستیک جریان می‌شود که به صورت عددی حل شده و به عنوان حل نیمه تحلیلی شناخته می­شود و برای اعتبار سنجی نتایج المان طیفی، در کنار کارهای گذشته، استفاده شده است. اثر پارامترهای اصلی جریان، یعنی عدد بینگهام، نسبت لزجت دو سیال و ضخامت هسته، بر افت فشار و ضخامت ناحیه تسلیم نشده مورد ارزیابی قرار گرفته است. نتایج نشان می‌دهد که عدد بینگهام تأثیر بیشتری بر افت فشار و ضخامت ناحیه تسلیم نشده دارد. همچنین توزیع متغیرهای ثانویه، شامل لزجت ظاهری و تنش برشی، در مقطع کانال ارائه شده و نشان می‌دهد وجود اختلاط در مرز دو سیال، باعث تفاوت بین حل عددی و نیم هتحلیلی می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Solution of Viscoplastically Lubricated Multi-layer Core-Annular Flow Using the Spectral Element Method

نویسندگان [English]

  • Mehran Parsaei 1
  • Mohammad Sefid 2
  • Ali Akbar Dehghan 3
  • Azadeh Jafari 4
  • Ehsan Izadpanah 5
1 PhD Student/ Yazd University
2 Yazd University
3 Mech. Eng. Dept, Faculty of Engineering, Yazd University, IRAN
4 Assistant Professor, School of Mechanical Engineering
5 Assistant Professor, Persian Gulf University
چکیده [English]

The aim of this research is to simulate a multi-layer flow of the core-annular type in      a two-dimensional channel, in which a Newtonian fluid in the core is surrounded by a viscoplastic fluid of the regularized Bingham type. This simulation is based on the volume of fluid method. Flow and concentration equations are discretized spatially by the spectral element method. The velocity correction scheme, as a high order algorithm, is developed for splitting the velocity and pressure variables. Considering a developed flow leads to a nonlinear equation in the plastic region of the flow, which is numerically solved and is called semi-analytic solution and along with the previously published works, is used to validate the spectral element results. The effect of the main parameters of the flow,
i.e. Bingham number, viscosity ratio and core thickness on the pressure drop and un-yielded region thickness is evaluated. The results show that the Bingham number is the most effective parameter on the pressure drop and un-yielded region thickness. Also the profiles of secondary variables, including apparent viscosity and shear stress, across the channel section are presented and show that in the interface of the fluids, there is a difference between numerical and semi-analytic solutions.

کلیدواژه‌ها [English]

  • Spectral Element Method
  • Core-Annular Flow
  • Two-Dimensional Channel
  • Viscoplastic lubrication
  • Semi-analytic Solution
[1] D. D. Joseph, R. Bai, K. P. Chen, Y. Y. Renardy, Core- annular flows, Annual Review of Fluid Mechanics, 29(1) (1997) 65-90.
[2] R. Martínez-Palou, M.L. Mosqueira, B. Zapata- Rendón, E. Mar-Juárez, C. Bernal-Huicochea, J. de  la Cruz Clavel-López, J. Aburto, Transportation of heavy and extra-heavy crude oil by pipeline: A review, Journal of Petroleum Science and Engineering, 75(3– 4) (2011) 274-282.
[3] A.F. Clark, S. Abraham, Method of pumping viscous petroleum, U.S. Patent No. 2,533,878 (1950).
[4] S. Ghosh, T.K. Mandal, G. Das, P.K. Das, Review of oil water core annular flow, Renewable and Sustainable Energy Reviews, 13(8) (2009) 1957-1965.
[5] R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow and Applied Rheology: Engineering Applications, 2nd Edition, Butterworth-Heinemann Press, (2008).
[6] E.C. Bingham, Fluidity and Plasticity, McGraw-Hill, New York, (1922).
[7] I.A. Frigaard, C. Nouar, On the usage of viscosity regularisation methods for visco-plastic fluid flow computation, Journal of Non-Newtonian Fluid Mechanics, 127(1) (2005) 1-26.
[8] M. Bercovier, M. Engelman, A finite-element method for incompressible non-Newtonian flows, Journal of Computational Physics, 36(3) (1980) 313-326.
[9] I.A. Frigaard, Super-stable parallel flows of multiple visco-plastic fluids, Journal of Non-Newtonian Fluid Mechanics, 100(1–3) (2001) 49-75.
[10] C.K. Huen, I.A. Frigaard, D.M. Martinez, Experimental studies of multi-layer flows using a visco-plastic lubricant, Journal of Non-Newtonian Fluid Mechanics, 142(1) (2007) 150-161.
[11] S. Hormozi, K. Wielage-Burchard, I.A. Frigaard, Entry, start up and stability effects in visco-plastically lubricated pipe flows, Journal of Fluid Mechanics, 673 (2011) 432-467.
[12] S. Hormozi, K.W. Burchard, I.A. Frigaard, Multi- layer channel flows with yield stress fluids, Journal of Non-Newtonian Fluid Mechanics, 166(5–6) (2011)262-278.
[13]  M. d’Olce, J. Martin, N. Rakotomalala, D. Salin, L. Talon, Pearl and mushroom instability patterns in two miscible fluids’ core annular flows, Physics of Fluids, 20(2) (2008) 024104.
[14]   P. Sarmadi, S. Hormozi, I.A. Frigaard, Triple-layer configuration for stable high-speed lubricated pipeline transport, Physical Review Fluids, 2(4) (2017) 044302.
[15]  G. Karniadakis, M. Israeli, S.A. Orszag, High-order splitting methods for the incompressible Navier- Stokes equations, Journal of Computational Physics, 97(2) (1991) 414-443.
[16]  S.M.  Ghiaasiaan,   Two-Phase   Flow,   Boiling and Condensation, Cambridge University Press, Cambridge, (2008).
[17]  S. Ghosh, G. Das, P.K. Das, Simulation of core annular downflow through CFD—A comprehensive study, Chemical Engineering and Processing: Process Intensification, 49(11) (2010) 1222-1228.
[18]   S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, (1980).
[19] M. Le Bars, A. Davaille, Stability of thermal convection in two superimposed miscible viscous fluids, Journal of Fluid Mechanics, 471 (2002) 339-363.
[20] S. Hormozi, D.M. Martinez, I.A. Frigaard, Stable core-annular flows of viscoelastic fluids using the visco-plastic lubrication technique, Journal of Non- Newtonian Fluid Mechanics, 166(23–24) (2011) 1356-1368.
[21] A. Bolis, Fourier Spectral/hp Element Method: Investigation of Time-Stepping and Parallelisation Strategies, PhD Thesis, Imperial College London, 2013.
[22]  G.E. Karniadakis, S.J. Sherwin, Spectral/hp Element Methods for CFD, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, (1999).
[23] C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall PTR, (1971).
[24] C.D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. De Grazia, S. Yakovlev, J.E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto, R.M. Kirby, S.J. Sherwin, Nektar++: An open-source spectral/hp element framework, Computer Physics Communications, 192 (2015) 205-219.