[1] S.N. Nyamsi, F. Yang, Z. Zhang,An optimization study on the finned tube heat exchanger used in hydride hydrogen storage system–analytical method and numerical simulation, international journal of hydrogen energy, 37(21) (2012) 16078-16092.
[2] G. Lorenzini, S. Moretti, A. Conti, Fin shape thermal optimization using Bejan’s constructal theory, Synthesis Lectures on Engineering, 6(1) (2011) 1-219.
[3] D. Heymann, D. Pence, V. Narayanan, Optimization of fractal-like branching microchannel heat sinks for single-phase flows, International journal of thermal sciences, 49(8) (2010) 1383-1393.
[4] B. Kundu, D. Bhanja, Performance and optimization analysis of a constructal T-shaped fin subject to variable thermal conductivity and convective heat transfer coefficient, International Journal of Heat and Mass Transfer, 53(1-3) (2010) 254-267.
[5] Q. Chen, M. Wang, N. Pan, Z.-Y. Guo, Optimization principles for convective heat transfer, Energy, 34(9) (2009) 1199-1206.
[6] A. Bejan, M. Almogbel, Constructal T-shaped fins, International Journal of Heat and Mass Transfer, 43(12) (2000) 2101-2115.
[7] M.A. Almogbel, Constructal tree-shaped fins, International journal of thermal sciences, 44(4) (2005) 342-348.
[8] G. Lorenzini, L.A.O. Rocha, Constructal design of Y-shaped assembly of fins, International Journal of Heat and Mass Transfer, 49(23-24) (2006) 4552-4557.
[9] G. Lorenzini, L.A.O. Rocha, Constructal design of T–Y assembly of fins for an optimized heat removal, International Journal of Heat and Mass Transfer, 52(5-6) (2009) 1458-1463.
[10] C. Biserni, L. Rocha, A. Bejan, Inverted fins: geometric optimization of the intrusion into a conducting wall, International journal of heat and mass transfer, 47(12-13) (2004) 2577-2586.
[11] C. Biserni, L. Rocha, G. Stanescu, E. Lorenzini, Constructal H-shaped cavities according to Bejan’s theory, International Journal of Heat and Mass Transfer, 50(11-12) (2007) 2132-2138.
[12] G. Lorenzini, L.A.O. Rocha, Geometric optimization of TY-shaped cavity according to constructal design, International Journal of heat and mass transfer, 52(21-22) (2009) 4683-4688.
[13] M. Hajmohammadi, Introducing a ψ-shaped cavity for cooling a heat generating medium, International Journal of Thermal Sciences, 121 (2017) 204-212.
[14] S.L. Shindé, J. Goela, High thermal conductivity materials, Springer, 2006.
[15] M. Almogbel, A. Bejan, Conduction trees with spacings at the tips, International Journal of Heat and Mass Transfer, 42(20) (1999) 3739- 3756.
[16] G. Lorenzini, C. Biserni, L. Rocha, Constructal design of non-uniform X-shaped conductive pathways for cooling, International Journal of Thermal Sciences, 71 (2013) 140-147.
[17] G. Lorenzini, C. Biserni, L. Rocha, Constructal design of X-shaped conductive pathways for cooling a heat-generating body, International Journal of Heat and Mass Transfer, 58(1-2) (2013) 513-520.
[18] M. Hajmohammadi, V.A. Abianeh, M. Moezzinajafabadi, M. Daneshi, Fork-shaped highly conductive pathways for maximum cooling in a heat generating piece, Applied Thermal Engineering, 61(2) (2013) 228-235.
[19] M. Hajmohammadi, M. Ahmadian, S. Nourazar, Introducing highly conductive materials into a fin for heat transfer enhancement, International Journal of Mechanical Sciences, 150 (2019) 420-426.
[20] P.E. Gill, W. Murray, M.H. Wright, Practical optimization, (1981).