[1] J.R. McCready, M. Knofczynski, M.W. Keller, Sur- vivability of composite repairs of piping subjected to flexural loads, International Journal of Pressure Ves- sels and Piping, 152 (2017) 7-14.
[2] J.S. Kim, K.D. Bae, C. Lee, Y.J. Kim, W.S. Kim, I.J. Kim, Fatigue life evaluation of composite material sleeve using a residual stiffness model, International Journal of Fatigue, 101 (2017) 86-95.
[3] J.J. Denney, S. Mall, Characterization of disbond ef- fects on fatigue crack growth behavior in aluminum plate with bonded composite patch, Engineering Frac- ture Mechanics, 57(5) (1997) 507-525.
[4] J. J. Schubbe, S. Mall, Investigation of a cracked thick aluminum panel repaired with a bonded composite patch, Engineering Fracture Mechanics, 63.3 (1999) 305-323.
[5] D.C. Seo, J.J. Lee, Fatigue crack growth behavior of cracked aluminum plate repaired with composite patch, Composite Structures, 57(1-4) (2002) 323-330.
[6] J. Liu, M. Qin, Q. Zhao, L. Chen, P. Liu, J.Gao, Fa- tigue performances of the cracked aluminum-alloy pipe repaired with a shaped CFRP patch, Thin-Walled Structures, 111 (2017) 155-164.
[7] R. Brighenti, Patch repair design optimisation for frac- ture and fatigue improvements of cracked plates, In- ternational Journal of Solids and Structures, 44(3- 4)(2007) 1115-1131.
[8] A.M. Kumar, S.A. Hakeem, Optimum design of sym- metric composite patch repair to centre cracked metal- lic sheet, Composite Structures, 49(3) (2000) 285- 292.
[9] R. Jones, S. Barter, L. Molent, S. Pitt, Crack patching: an experimental evaluation of fatigue crack growth, Composite structures, 67(2) (2005) 229-238.
[10] V.Sabelkin, S. Mall, J. B. Avram, Fatigue crack growth analysis of stiffened cracked panel repaired with bonded composite patch, Engineering Fracture Mechanics, 73(11) (2006) 1553-1567.
[11] V.A. Karatzas, E.A. Kotsidis, N.G. Tsouvalis, Ex- perimental fatigue study of composite patch repaired steel plates with cracks, Applied Composite Materials, 22(5) (2015) 507-523.
[12] E.F. Rybicki, M.F. Kanninen, A finite element calcu- lation of stress intensity factors by a modified crack closure integral, Engineering Fracture Mechanics, 9 (1977) 931–938.
[13] K.N. Shivakumar, P.W. Tan, J.C. Newman, A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies, Interna- tional Journal of Fracture, 36 (1988) 43–50.
[14] P.S. Valvo, A physically consistent virtual crack clo- sure technique for I/II/III mixed-mode fracture prob- lems, Procedia Materials Science, 3 (2014) 1983- 1987.
[16] M.F.S.F. de Moura, R.D.S.G. Campilho, J.P.M. Gon- çalves, Equivalent crack based analyses of ENF and ELS tests, Engineering Fracture Mechanics, 75(9) (2008) 2584-2596.
[17] B.R.K. Blackman, A.J. Kinloch, M. Paraschi, The determination of the mode II adhesive fracture resis- tance, GIIc, of structural adhesive joints: an effective crack length approach, Engineering Fracture Mechan-ics, 72 (2005) 877–97.
[18] B.R.K. Blackman, A.J. Brunner, J.G. Williams, Mode II fracture testing of composites: a new look at an old problem, Engineering Fracture Mechanics, 73 (2006) 2443–2455.
[19] M. F. S. F. De Moura, R. D. S. G. Campilho, J. P. M. Gonçalves, Pure mode II fracture characterization of composite bonded joints, International Journal of Sol- ids and Structures, 46(6) (2009) 1589-1595.
[20] A. Argüelles, J. Viña, A. Fernández-Canteli, I. Viña, J. Bonhomme, Influence of the matrix constituent on mode I and mode II delamination toughness in fiber- reinforced polymer composites under cyclic fatigue, Mechanics of materials, 43(1) (2011) 62-67.
[21] V. Mollón, J. Bonhomme, A. Argüelles, J. Viña, In- fluence of the crack plane asymmetry over GII results in carbon epoxy ENF specimens, Composite Struc- tures, 94(3) (2012) 1187-1191.
[22] R. Panduranga, K. Shivakumar, Mode-II total fatigue life model for unidirectional IM7/8552 carbon/epoxy composite laminate, International Journal of Fatigue, 94 (2017) 97-109.
[23] ASTM, D7905/D7905M: Standard test method for mode II interlaminar fracture toughness of unidirec- tional fiber-reinforced polymer matrix composites, American Standard of Testing Methods, Vol. 4, pp. 1-18, 2014. doi: 10.1520/D7905_D7905M-14.
[24] Reddy JN. Mechanics of laminated composite plates and shells. 2nd ed. CRC Press; 2004.
[25] F. Asgari Mehrabadi, Fracture Mechanic Analysis In Adhesive Composite/Aluminum Joints, MSc Thesis, University of Tabriz, Mechanical Engineering Depart- ment, September 2011.
[26] A. Kariman Moghadam, S. Rahnama, S. Maleki, Ex- perimental and numerical investigation of crack growth in adhesive bonding of two composites plates under mode I, Modares Mechanical Engineering, 16(5) (2016) 271-280. (in Persian)
[27] W.S. Kim, J.J. Lee, Fracture characterization of inter- facial cracks with frictional contact of the crack sur- faces to predict failures in adhesive-bonded joints, Engineering Fracture Mechanics, 76 (2009) 1785– 1799.
[28] R. Krueger, Virtual crack closure technique: history, approach, and applications, Applied Mechanics Re- views, 57(2) (2004) 109-143.