[1] S. Chaterjee, G. Pohit, A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams, Journal of sound and vibration, .689-969 (9002) (4)223.
[2] A. Tocchio, A. Caspani, G. Langfelder, Mechanical and electronic amplitude-limiting techniques in a MEMS resonant accelerometer, IEEE Sensors Journal, 12)6( )2012( 1719-1725.
[3] L.J. Currano, M. Yu, B. Balachandran, Latching in a MEMS shock sensor: Modeling and experiments, Sensors and Actuators A: Physical, 159)1( )2010( 41-50.
[4] M.H. Mahdavi, A. Farshidianfar, M. Tahani, S. Mahdavi, H. Dalir, A more comprehensive modeling of atomic force microscope cantilever, Ultramicroscopy, 109)1( )2008( 54-60.
[5] M. Kahrobaiyan, M. Asghari, M. Rahaeifard, M. Ahmadian, Investigation of the size-dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory, International Journal of Engineering Science, 48(12) (2010) 1985-1994.
[6] R. Mestrom, R. Fey, J. Van Beek, K. Phan, H. Nijmeijer, Modelling the dynamics of a MEMS resonator: simulations and experiments, Sensors and Actuators A: Physical, 142(1) (2008) 306-315.
[7] M. Roukes, Nanoelectromechanical systems face the future, Physics World, 14(2) (2001) 25.
[8] V. Logeeswaran, F.E. Tay, M. Chan, F.S. Chau, Y.C. Liang, 2f method for the measurement of resonant frequency and Q-factor of micromechanical transducers, in: Design, Test, Integration, and Packaging of MEMS/MOEMS, International Society for Optics and Photonics, 4755 (2002), 584-594.
[9] J.A. Harley, E.M. Chow, T.W. Kenny, Design of resonant beam transducers: An axial force probe for atomic force microscopy, in: Micro-ElectroMechanical Systems: ASME Intl. ME Congress and Exposition, 1998, 274-252.
[10] Y.C. Wang, S.G. Adams, J.S. Thorp, N.C. MacDonald, P. Hartwell, F. Bertsch, Chaos in MEMS, parameter estimation and its potential application, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 45)10( )1998( 1013-1020.
[11] J. Awrejcewicz, V. Krysko, I. Papkova, A. Krysko, Routes to chaos in continuous mechanical systems. Part 1: Mathematical models and solution methods, Chaos, Solitons & Fractals, 45(6) (2012) 687-708.
[12] A. Krysko, J. Awrejcewicz, I. Papkova, V. Krysko, Routes to chaos in continuous mechanical systems: Part 2. Modelling transitions from regular to chaotic dynamics, Chaos, Solitons & Fractals, 45(6) (2012) 709-720.
[13] J. Awrejcewicz, A. Krysko, I. Papkova, V. Krysko, Routes to chaos in continuous mechanical systems. Part 3: The Lyapunov exponents, hyper, hyperhyper and spatial–temporal chaos, Chaos, Solitons & Fractals, 45(6) (2012) 721-736.
[14] X. Yang, P. Sethna, Local and global bifurcations in parametrically excited vibrations of nearly square plates, International journal of Non-linear Mechanics, 26(2) (1991) 199-220.
[15] X. Yang, P.R. Sethna, Non-linear phenomena in forced vibrations of a nearly square plate: antisymmetric case, Journal of Sound and Vibration, 155(3)(1992) 413-441.
[16] J. Awrejcewicz, E.Y. Krylova, I. Papkova, V.A. Krysko, Regular and chaotic dynamics of flexible plates, Shock and Vibration, (2014 ) 1-8.
[17] C. Touzé, O. Thomas, M. Amabili, Transition to chaotic vibrations for harmonically forced perfect and imperfect circular plates, International Journal of nonlinear Mechanics, 46(1) (2011) 234-246.
[18] M. Amabili, A. Sarkar, M. Païdoussis, Chaotic vibrations of circular cylindrical shells: Galerkin versus reduced-order models via the proper orthogonal decomposition method, Journal of Sound and Vibration, 290(3-5) (2006) 736-762.
[19] Y. Hao, L. Chen, W. Zhang, J. Lei, Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate, Journal of Sound and Vibration,312(4-5)(2008) 862-892.
[20] Q. Ma, D.R. Clarke, Size dependent hardness of silver single crystals, Journal of Materials Research, 10(4)(1995)853-863.
[21] J. Stölken, A. Evans, A microbend test method for measuring the plasticity length scale, Acta Materialia, 46(14) (1998) 5109-5115.
[22] A.C. Chong, D.C. Lam, Strain gradient plasticity effect in indentation hardness of polymers, Journal of Materials Research, 14(10) )(999) 4103-4110.
[23] F. Yang, A. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, 39(10) (2002) 2731-2743.
[24] S. Park, X. Gao, Bernoulli–Euler beam model based on a modified couple stress theory, Journal of Micromechanics and Microengineering, 16(11) (2006) 2355.
[25] A. Andakhshideh, S. Maleki, H. Karamad, Sizedependent nonlinear vibration of non-uniform microbeam with various boundary conditions, Modares Mechanical Engineering, 18(9) (2019) 189- 198.(in Persian)
[26] S. Salehi, O. Rahmani, S.A. Hoseini, Free and forced vibration analysis of Kelvin-Voigt viscoelastic rectangular nanoplate based on the modified couple stress theory, Amirkabir Journal of Mechanical Engineering, (2018). (in Persian)
[27] M.H. Ghayesh, H. Farokhi, Nonlinear dynamics of microplates, International Journal of Engineering Science, 86 (2015) 60-73.
[28] H. Farokhi, M.H. Ghayesh, Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory, International Journal of Mechanical Sciences, 90 (2015) 133-144.
[29] H. Ramezannejad Azarboni, H. Keshavarzpour, M. Rahimzadeh, Nonlocal analysis of chaotic vibration, primary and super-harmonic resonance of single walled carbon nanotube in thermal environment, Amirkabir Journal of Mechanical Engineering, (2018). (in Persian)
[30] E.M. Miandoab, A. Yousefi-Koma, H.N. Pishkenari, F. Tajaddodianfar, Study of nonlinear dynamics and chaos in MEMS/NEMS resonators, Communications in Nonlinear Science and Numerical Simulation, 22(1)(2015) 611-622.
[31] D.G. Bassinello, A.M. Tusset, R.T. Rocha, J.M. Balthazar, Dynamical Analysis and Control of a Chaotic Microelectromechanical Resonator Model, Shock and Vibration, (2018).
[32] S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Springer Science & Business Media, (2003).
[33] A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series, Physica D: Nonlinear Phenomena, 16(3) (1985) 285-317.
[34] H. Tourajizadeh, M. Kariman, M. Zamanian, B. Firouzi, Optimal Control of Electrostatically Actuated Micro-Plate Attached to the End of Microcantilever, Amirkabir Journal of Mechanical Engineering, 49(4) (2018) 805-818. (in Persian)
[35] A.M. Tusset, F.C. Janzen, R.T. Rocha, J.M. Balthazar, On an Optimal Control Applied in MEMS Oscillator with Chaotic Behavior including Fractional Order, Complexity, 2018 (2018) 1-12.
[36] H. Vaghefpour, H. Arvin, Y. Tadi Bani, Tip Tracking Control of Piezoelectric Nano-Actuator with Flexoelectric Size-Dependent Theory, Amirkabir Journal of Mechanical Engineering, (2018). (in Persian)
[37] A. Poursamad, A.H. Davaie-Markazi, Robust adaptive fuzzy control of unknown chaotic systems, Applied Soft Computing, 9(3) (2009) 970-976.
[38] J.N. Reddy, Theory and analysis of elastic plates and shells, CRC press, 2006.
[39] S. Wiggins, Global bifurcations and chaos: analytical methods, Springer Science & Business Media, (2013).
[40] A.W. Leissa, The free vibration of rectangular plates, Journal of sound and vibration, 31(3) (1973) 257-293.
[41] A.R. Zeni, J.A. Gallas, Lyapunov exponents for a Duffing oscillator, Physica D: Nonlinear Phenomena,89(1-2)(1995)71-82.