[1] E. Brinksmeier, Diamond Machining, Encyclopedia of Production Engineering, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014.
[2] G. P. H. Gubbels, Diamond turning of glassy polymers, Citeseer, 2006.
[3] G. Chapman, Ultra-precision Machining Systems; an Enabling Technology for Perfect Surfaces, Moore Nanotechnology System, (2015) 1–9.
[4] N. Taniguchi, Current status in, and future trends of, ultraprecision machining and ultrafine materials processing, CIRP Annals, 32(2) (1983) 573–582.
[5] E. Brinksmeier, Ultraprecision Machining, CIRP Encyclopedia of Production Engineering, Berlin, (2014) 1277–1280.
[6] E. Brinksmeier, Y. Mutlugünes, F. Klocke, J. C. Aurich, P. Shore, H. Ohmori, Ultra-precision grinding, CIRP Annals, 59(2) (2010) 652–671.
[7] M. Heidari, J. Yan, Ultraprecision surface flattening of porous silicon by diamond turning, Precision Engineering, 49 (2017) 262–277.
[8] W. A. Gross, Investigation of whirl in externally pressurized air-lubricated journal bearings, Journal of Basic Engineering, 84(1) (1962) 132–138.
[9] D. J. Whitehouse, Handbook of surface metrology. CRC Press, 1994.
[10] M. Moradi, O. Mehrabi, T. Azdast, K. Y. Benyounis, Enhancement of low power CO2 laser cutting process for injection molded polycarbonate, Optics & Laser Technology, 96 (2017) 208–218.
[11] C. Cheung, W.B . Lee, Characterisation of nanosurface generation in single-point diamond turning, International Journal of Machine Tools and Manufacture, 41(6) (2001) 851–875.
[12] Q. Gao, L. Lu, W. Chen, G. Wang, Influence of air-induced vibration of aerostatic bearing on the machined surface quality in ultra-precision flycutting, Proceedings of the Institution of Mechanical Engineers, Part J, 232(2) (2017) 117-125.
[13] M. Akhondzadeh, and M. Vahdati, Air pocket effects on air spindle vibrations in nanomachining, Proceedings of the Institution of Mechanical Engineers, Part J, 228 (3) (2013) 328–336.
[14] M. Akhondzadeh, and M. Vahdati, Study of variable depth air pockets on air spindle vibrations in ultraprecision machine tools, The International Journal of Advanced Manufacturing Technology, 73 (5–8) (2014) 681–686.
[15] M. Vahdati, and S. A. Rasouli, Vibration Simulation of Air Slide Table in Ultra Precision Machines, Applied Mechanics and Materials, 66–68 (2011) 2158–2163.
[16] A. Mir, X. Luo, and A. Siddiq, Smooth particle hydrodynamics study of surface defect machining for diamond turning of silicon, The International Journal of Advanced Manufacturing Technology, 88 (9–12) (2017) 2461–2476.
[17] A. Mir, X. Luo, K. Cheng, and A. Cox, Investigation of influence of tool rake angle in single point diamond turning of silicon, The International Journal of Advanced Manufacturing Technology, 94 (5–8) (2018) 2343–2355.
[18] M. P. Allen and D. J. Tildesley, Computer simulation of liquids. Oxford university press, 1989.
[19] S. Z. Chavoshi, S. Goel, and X. Luo, Influence of temperature on the anisotropic cutting behaviour of single crystal silicon: A molecular dynamics simulation investigation, Journal of Manufacturing Processes, 23 (2016) 201–210.
[20] S. V. Hosseini and M. Vahdati, Modeling the effect of tool edge radius on contact zone in nanomachining, Computational Materials Science, 65 (2012) 29–36.
[21] J. Tersoff, New empirical approach for the structure and energy of covalent systems, Physical Review B, 37(12) (1988) 6991–7000.
[22] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics, vol. 117, no. 1, pp. 1–19, Mar. 1995.
[23] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, Modelling and Simulation in Materials Science and Engineering, 18(1) (2010).
[24] A. V. Outeiro JC, The role of the relative tool sharpness in modelling of the cutting process, Proc Eigth CIRP Int Workshop Model Mach Oper,517–524, 2005.
[25] S. To, C. F. Cheung, and W. B. Lee, Influence of material swelling on surface roughness in diamond turning of single crystals, Journal of Materials Science & Technology, 17(1) (2001) 102–108.
[26] M. A. Rahman, M. R. Amrun, M. Rahman, and A. S. Kumar, Variation of surface generation mechanisms in ultra-precision machining due to relative tool sharpness (RTS) and material properties, International Journal of Machine Tools and Manufacture, 115 (2017) 15–28.
[27] D. a. Lucca, P. Chou, and R. J. Hocken, Effect of Tool Edge Geometry on the Nanometric Cutting of Ge, CIRP Annals, 47(1) (1998) 475–478.
[28] M. Heidari and J. Yan, Nanometer-scale chip formation and surface integrity of pure titanium in diamond turning, The International Journal of Advanced Manufacturing Technology, 95 (1–4) (2018) 479–492.
[29] N. Elfström, A. E. Karlström, and J. Linnros, Silicon nanoribbons for electrical detection of biomolecules, Nano Letters, 8 (3) (2008)945–949.
[30] M. Heidari and J. Yan, Material removal mechanism and surface integrity in ultraprecision cutting of porous titanium, Precision Engineering, 52 (2018).