[1] R. Hughes, A. Handlos, H. Evans, R. Maycock, Formation of bubbles at simple orifices, in, Library of Congress, 1955.
[2]L. Davidson, E.H. Amick Jr, Formation of gas bubbles at horizontal orifices, AIChE Journal, 2(3) (1956) 337-342.
[3] R.J. Benzing, J.E. Myers, Low frequency bubble formation at horizontal circular orifices, Industrial & Engineering Chemistry, 47(10) (1955) 2087-2090.
[4] C. Quigley, A. Johnson, B. Harris, Size and mass transfer studies of gas bubbles, in: Chemical Engineering Progress Symposium Series, American Institute of Chemical Engineers, New York, 1955, pp. 31.
[5] W. Siemes, Gasblasen in Flüssigkeiten. Teil I: Entstehung von Gasblasen an nach oben gerichteten kreisförmigen Düsen, Chemie Ingenieur Technik, 26(8-9) (1954) 479-496
[6] W. Siemes, Gasblasen in Flüssigkeiten. Teil II: Der Aufstieg von Gasblasen in Flüssigkeiten, Chemie Ingenieur Technik, 26(11) (1954) 614-630..
[7] J. Davidson, B. Schüler, Bubble formation at an orifice in a viscous liquid, Chemical Engineering Research and Design, 75 (1997) S105-S115.
[8] A.A. Kulkarni, J.B. Joshi, Bubble formation and bubble rise velocity in gas− liquid systems: a review, Industrial & Engineering Chemistry Research, 44(16) (2005) 5873-5931.
[9] R.T. Knapp, A. Hollander, Laboratory investigations of the mechanism of cavitation, Transactions of the ASME, 70 (1948) 419-433.
[10] I. Dias, M. Reithmuller, PIV in two-phase flows: simultaneous bubble sizing and liquid velocity measurements, in: Laser Techniques Applied to Fluid Mechanics, Springer, 2000, pp. 71-85.
[11] W. Lauterborn, W. Hentschel, Cavitation bubble dynamics studied by high speed photography and holography: part one, Ultrasonics, 23(6) (1985) 260268.
[12] H. Meng, P. Boot, C. Van Der Geld, High pressure optical measurements of sizes, velocities and longitudinal positions of bubbles, International journal of multiphase flow, 21(1) (1995) 95-105.
[13] E. Gaddis, A. Vogelpohl, Bubble formation in quiescent liquids under constant flow conditions, Chemical Engineering Science, 41(1) (1986) 97-105.
[14] H.N. Oguz, A. Prosperetti, Dynamics of bubble growth and detachment from a needle, Journal of Fluid Mechanics, 257 (1993) 111-145.
[15] Z. Yang, T.-N. Dinh, R. Nourgaliev, B. Sehgal, Numerical investigation of bubble growth and detachment by the lattice-Boltzmann method, International Journal of Heat and Mass Transfer, 44(1) (2001) 195-206.
[16] A. Das, P. Das, Incorporation of diffuse interface in smoothed particle hydrodynamics: implementation of the scheme and case studies, International Journal for Numerical Methods in Fluids, 67(6) (2011) 671-699.
[17] A. Das, P. Das, Equilibrium shape and contact angle of sessile drops of different volumes—Computation by SPH and its further improvement by DI, Chemical Engineering Science, 65(13) (2010) 4027-4037.
[18] A. Das, P. Das, Bubble evolution through submerged orifice using smoothed particle hydrodynamics: Basic formulation and model validation, Chemical Engineering Science, 64(10) (2009) 2281-2290.
[19] M. Huber, D. Dobesch, P. Kunz, M. Hirschler, U. Nieken, Influence of orifice type and wetting properties on bubble formation at bubble column reactors, Chemical Engineering Science, 152 (2016) 151-162.
[20] S. Fleckenstein, D. Bothe, Simplified modeling of the influence of surfactants on the rise of bubbles in VOF-simulations, Chemical engineering science, 102 (2013) 514-523.
[21] M. Pourtousi, P. Ganesan, A. Kazemzadeh, S.C. Sandaran, J. Sahu, Methane bubble formation and dynamics in a rectangular bubble column: A CFD study, Chemometrics and Intelligent Laboratory Systems, 147 (2015) 111-120.
[22] G.M. de Oliveira, A.T. Franco, C.O. Negrão, A.L. Martins, R.A. Silva, Modeling and validation of pressure propagation in drilling fluids pumped into a closed well, Journal of Petroleum Science and Engineering, 103 (2013) 61-71.
[23] N. Chung, W. Lin, B. Pei, Y. Hsu, Sound attenuation and its relationship with interfacial area density in an air-water two-phase bubbly flow, Flow Measurement and Instrumentation, 3(1) (1992) 45-53.
[24] R.J. Benzing, J.E. Myers, Low frequency bubble formation at horizontal circular orifices, Industrial & Engineering Chemistry, 47(10) (1955) 2087-2090.
[25] M.S. Longuet-Higgins, Monopole emission of sound by asymmetric bubble oscillations. Part 1. Normal modes, Journal of Fluid Mechanics, 201 (1989) 525.145
[26] M.S. Longuet-Higgins, Monopole emission of sound by asymmetric bubble oscillations. Part 2. An initialvalue problem, Journal of Fluid Mechanics, 201 (1989) 543-565.
[27] M.S. Plesset, A. Prosperetti, Bubble dynamics and cavitation, Annual review of fluid mechanics, 9(1) (1977) 145-185.
[28] T. Alhashan, A. Addali, The effect of salt water on bubble formation during pool boiling using acoustic emission technique, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN, (2016) 2278-1684.
[29] T. Alhashan, A. Addali, J.A. Teixeira, S. Elhashan, Identifying bubble occurrence during pool boiling employing acoustic emission technique, Applied Acoustics, 132 (2018) 191-201.
[30] L. Chen, C. Norwood, P. White, T. Leighton, Study of bubble formation dynamics based on associated acoustic radiation, ICSV24, London, 23-27 July 2017
[31] Z. Wang, Y. Li, B. Huang, D. Gao, Numerical investigation on the influence of surface tension and viscous force on the bubble dynamics with a CLSVOF method, Journal of Mechanical Science and Technology, 30(6) (2016) 2547-2556.
[32] N. Balcázar, O. Lehmkuhl, L. Jofre, J. Rigola, A. Oliva, A coupled volume-of-fluid/level-set method for simulation of two-phase flows on unstructured meshes, Computers & Fluids, 124 (2016) 12-29.
[33] S.-P.Wang, G.-Q. Chen, X. Huang, Bubble dynamics and its applications., Journal of Hydrodynamics, (2018)1-17.
[34] R. Manasseh, G. Riboux, F. Risso, Sound generation on bubble coalescence following detachment, International Journal of Multiphase Flow, 34(10) (2008) 938-949.
[35] P.A.V. Olivares, Acoustic wave propagation and modeling turbulent water flows with acoustics for district heating pipes, Ph. D. dissertation, Uppsala Univeristy, 2009.
[36] M. Piellard, C. Bailly, Several Computational Aeroacoustics solutions for the ducted diaphragm at low Mach number, in: 16th AIAA/CEAS aeroacoustics conference, 2010, pp. 3996.
[37] J. Liu, Simulation of whistle noise using computational fluid dynamics and acoustic fInite element simulation, Theses and Dissertations, Mechanical Engineering-University of Kentucky,2012
[38] J. Liu, S. Qin, D. Wu, Acoustic analyses on jetbubble formation based on 3D numerical simulations, in: INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Institute of Noise Control Engineering, 2016, pp. 1459-1467.
[39] F. Xiao, M. Dianat, J.J. McGuirk, LES of turbulent liquid jet primary breakup in turbulent coaxial air flow, International Journal of Multiphase Flow, 60 (2014) 103-118.
[40] J. Liu, W. Wang, N. Chu, D. Wu, W. Xu, Numerical simulations and experimental validation on passive acoustic emissions during bubble formation, Applied Acoustics, 130 (2018) 34-42.
[41] X. Ma, B. Huang, Y. Li, Q. Chang, S. Qiu, Z. Su, X. Fu, G. Wang, Numerical simulation of single bubble dynamics under acoustic travelling waves, Ultrasonics sonochemistry, 42 (2018) 619-630.
[42] N.K. Singh, P.A. Rubini, Large eddy simulation of acoustic pulse propagation and turbulent flow interaction in expansion mufflers, Applied Acoustics, 98 (2015) 6-19.
[43] E. Habibi, M. Ansari, Acoustic analysis of aerodynamics noise of bubble formation in fluid column, Sharif journal, (2019),10.24200/ j40.2017.10769.1420 (In Persian)
[44] J. Davidson, Bubble formation at an orifice in a viscous liquid, Transaction of Institute of Chemical Engineering, 38 (1960) 144-154.
[45] C.E. Brennen, C.E. Brennen, Fundamentals of multiphase flow, Cambridge university press, 2005.
[46] F. Nicoud, F. Ducros, Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow, turbulence and Combustion, 62(3) (1999) 183-200.
[47] A.A. Al-Abidi, S.B. Mat, K. Sopian, M. Sulaiman, A.T. Mohammed, CFD applications for latent heat thermal energy storage: a review, Renewable and sustainable energy reviews, 20 (2013) 353-363.
[48] S. Yakubov, T. Maquil, T. Rung, Experience using pressure-based CFD methods for Euler–Euler simulations of cavitating flows, Computers & Fluids, 111 (2015) 91-104.
[49] O. Coutier-Delgosha, J. Reboud, Y. Delannoy, Numerical simulation of the unsteady behaviour of cavitating flows, International journal for numerical methods in fluids, 42(5) (2003) 527-548.
[50] M. Dular, O. Coutier-Delgosha, Numerical modelling of cavitation erosion, International journal for numerical methods in Fluids, 61(12) (2009) 1388-1410
[51] E. Goncalves, M. Champagnac, R. Fortes Patella, Comparison of numerical solvers for cavitating flows, International Journal of Computational Fluid Dynamics, 24(6) (2010) 201-216.
[52] Adams N, Schmidt S. (2013). “ Bubble dynamics and shock waves”, , Heidelberg: Springer; p.235–56.
[53] T. Wacławczyk, T. Koronowicz, Comparison of CICSAM and HRIC high-resolution schemes for interface capturing, Journal of theoretical and applied mechanics, 46 (2008) 325-345.
[54] J.E. Ffowcs Williams, D.L. Hawkings, Sound generation by turbulence and surfaces in arbitrary motion, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 264(1151) (1969) 321-342.
[55] H. Grosshans, A. Movaghar, L. Cao, M. Oevermann, R.-Z. Szász, L. Fuchs, Sensitivity of VOF simulations of the liquid jet breakup to physical and numerical parameters, Computers & Fluids, 136 (2016) 312323.
[56] A. Vazquez, I. Leifer, R. Sánchez, Consideration of the dynamic forces during bubble growth in a capillary tube, Chemical Engineering Science, 65(13) (2010) 4046-4054.
[57] L. d’Agostino, C.E. Brennen, Acoustical absorption and scattering cross sections of spherical bubble clouds, The Journal of the Acoustical Society of America, 84(6) (1988) 2126-2134.