[1] K. Maruta, T. Kataoka, N. Il, S. Minaev, R. Fursenko, and N. Il Kim, Characteristics of combustion in a narrow channel with a temperature gradient, Proceedings of the Combustion Institute, 30(2) (2005) 2429–2436.
[2] Y. Ju and B. Xu, Theoretical and experimental studies on mesoscale flame propagation and extinction, Proceedings of the Combustion Institute, 30(2) (2005) 2445–2453.
[3] Y. Ju and B. Xu, Effects of Channel Width and Lewis Number on the Multiple Flame Regimes and Propagation Limits in Mesoscale, Combustion Science and Technology, 178(10–11) (2006) 1723–1753.
[4] K. Maruta, J. K. Parc, K. C. Oh, T. Fujimori, S. S. Minaev, and R. V. Fursenko, Characteristics of Microscale Combustion in a Narrow Heated Channel, Combustion, Explosion, and Shock Waves, 40(5) (2004) 516–523.
[5] G. Pizza, C. E. Frouzakis, J. Mantzaras, A. G. Tomboulides, K. Boulouchos, and A. T. G., Dynamics of premixed hydrogen/air flames in mesoscale channels, Combustion and Flame, 155(1–2) (2008) 2–20.
[6] G. Pizza, C. E. Frouzakis, J. Mantzaras, a. G. Tomboulides, and K. Boulouchos, Three-dimensional simulations of premixed hydrogen/air flames in microtubes, Journal of Fluid Mechanics, 658 (2010) 463–491.
[7] F. Richecoeur and D. C. Kyritsis, Experimental study of flame stabilization in low Reynolds and Dean number flows in curved mesoscale ducts, Proceedings of the Combustion Institute, 30(2) (2005) 2419–2427.
[8] C. J. Evans and D. C. Kyritsis, Operational regimes of rich methane and propane/oxygen flames in mesoscale non-adiabatic ducts, Proceedings of the Combustion Institute, 32(2) (2009) 3107–3114.
[9] G. Pizza, C. E. Frouzakis, J. Mantzaras, A. G. Tomboulides, and K. Boulouchos, Dynamics of premixed hydrogen/air flames in micro channels, Combustion and Flame, 155(1) (2008) 2–20.
[10] G. Pizza, C. E. Frouzakis, J. Mantzaras, A. G. Tomboulides, and K. Boulouchos, Dynamics of premixed hydrogen / air flames in microchannels, Combustion and Flame, 152(3) (2008) 433–450.
[11] Y. Fan, Y. Suzuki, and N. Kasagi, Experimental study of micro-scale premixed flame in quartz channels, Proceedings of the Combustion Institute, 32(2) (2009) 3083–3090.
[12] A. Fan et al., Dynamic Behavior of Splitting Flames in a Heated Channel, Combustion, Explosion, and Shock Waves, 45(3) (2009) 245–250.
[13] Y. Fan, Y. Suzuki, and N. Kasagi, Quenching mechanism study of oscillating flame in micro channels using phase-locked OH-PLIF, Proceedings of the Combustion Institute, 33(2) (2011) 3267–3273.
[14] S. Minaev, K. Maruta, and R. Fursenko, Nonlinear dynamics of flame in a narrow channel with a temperature gradient, Combustion Theory and Modelling, 11(2) (2007) 187–203.
[15] T. L. Jackson, J. Buckmaster, Z. Lu, D. C. Kyritsis, and L. Massa, Flames in narrow circular tubes, Proceedings of the Combustion Institute, 31(1) (2007) 955–962.
[16] V. N. Kurdyumov, G. Pizza, C. E. Frouzakis, and J. Mantzaras, Dynamics of premixed flames in a narrow channel with a step-wise wall temperature, Combustion and Flame, 156(11) (2009) 2190–2200.
[17] H. Nakamura et al., Bifurcations and negative propagation speeds of methane/air premixed flames with repetitive extinction and ignition in a heated microchannel, Combustion and Flame, 159(4) (2012) 1631–1643.
[18] Y. Tsuboi, T. Yokomori, and K. Maruta, Lower limit of weak flame in a heated channel, Proceedings of the Combustion Institute, 32(2) (2009) 3075–3081.
[19] A. Yamamoto, H. Oshibe, H. Nakamura, T. Tezuka, S. Hasegawa, and K. Maruta, Stabilized three-stage oxidation of gaseous n-heptane/air mixture in a micro flow reactor with a controlled temperature profile, Proceedings of the Combustion Institute, 33(2) (2011) 3259–3266.
[20] G. Pizza, J. Mantzaras, and C. E. Frouzakis, Flame dynamics in catalytic and non-catalytic mesoscale microreactors, Catalysis Today, 155(1–2) (2010) 123– 130.
[21] U. R. S. Dogwiler, J. Mantzaras, P. Benz, B. Kaeppeli, and R. Bombach, Homogeneous ignition of methane-air mixtures over platinum: Comparison of measurements and detailed numerical predictions, Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, (1998) 2275–2282.
[22] V. Kurdyumov, E. Fernández-Tarrazo, J.-M. Truffaut, J. Quinard, A. Wangher, and G. Searby, Experimental and numerical study of premixed flame flashback, Proceedings of the Combustion Institute, 31(1) (2007) 1275–1282.
[23] A. Petchenko and V. Bychkov, Axisymmetric versus non-axisymmetric flames in cylindrical tubes, Combustion and Flame, 136(4) (2004) 429–439.
[24] C.-H. Tsai, The Asymmetric Behavior of Steady Laminar Flame Propagation in Ducts, Combustion Science and Technology, 180(3) (2008) 533–545.
[25] S. R. Turns, An Introduction to combustion : Concepts and Applications, Second Edi. Mc Graw Hill, 200AD.
[26] R. A. Yetter, F. L. Dryer, and H. Rabitz, A Comprehensive Reaction Mechanism For Carbon Monoxide/Hydrogen/Oxygen Kinetics, Combustion Science and Technology, 79 (1991) 97–128.
[27] A. Alipoor and M. H. Saidi, Numerical study of hydrogen-air combustion characteristics in a novel micro-thermophotovoltaic power generator, Applied Energy, 199 (2017) 382–399.
[28] A. Alipoor and K. Mazaheri, Combustion characteristics and flame bifurcation in repetitive extinction-ignition dynamics for premixed hydrogen- air combustion in a heated micro channel, Energy, 109 (2016) 650–663.
[29] A. Alipoor, K. Mazaheri, and A. Shamooni, Asymmetric hydrogen flame in a heated micro-channel : Role of Darrieus e Landau and thermal-diffusive instabilities, International Journal of Hydrogen Energy, 41(44) (2016) 20407–20417.
[30] A. Alipoor and K. Mazaheri, Studying the repetitive extinction-ignition dynamics for lean premixed hydrogen-air combustion in a heated microchannel, Energy, 73 (2014) 367–379.
[31] T. Poinsot and D. Veynanye, Theoretical and Numerical Combustion, 2nd ed. Edwards, 2005.