Study of Anastomosis Obtuse Angles to Reduce Fistula Failure with Numerical Simulation

Document Type : Research Article

Authors

1 student of tarbiat modares university

2 tarbiat modares university

Abstract

Regarding the major determinant of Anastomosis angle in the efficiency of fistula for dialysis, obtuse angle Anastomosises are designed and simulated with angles of 90, 120, 135 and 145 degrees and the obtained results are evaluated from the standpoint of flow patterns at the region of the Anastomosis and shear stress in the fistula wall. In this study, in order to compare obtained results in fistula, two Newtonian and carreau non-Newtonian blood models are used at maximum and medium flow rate of blood pulsation curve (in flow rate at the time of 0.2 and 0.4 seconds respectively). At an angle of 90 degrees, the formed vortices dimensions, due to the separation of the flow during passing through the region of the Anastomosis, significantly larger than obtuse angles. Consequently, the probability  of deposition in the region of the flow increases sharply. So from the standpoint of flow pattern, the 90-degree angles are inappropriate Anastomosis angle for fistula. At the obtuse angles, the dimensions of these vortexes become much smaller, and then the obtuse angles are considered a better choice. From the standpoint of maximum shear stress, Anastomosis with obtuse angles in comparison with the Anastomosis angle of 90 degrees, has lower maximum shear stress values and the range involved in the maximum shear stress in Anastomosis with 90 degrees is much wider than the range of Anastomosis with the obtuse. Hence, the probability of manifestation of thrombosis (the main factor of fistula failure) is much higher. In this simulation, the results related to the Newtonian and non-Newtonian models are very close, and the non-Newtonian model predicts shear stress slightly more.

Keywords

Main Subjects


[1]  A.M. Karmody, N. Lempert, “Smooth loop” arteriove- nous fistulas for hemodialysis, Surgery, 75(2) (1974) 238-242.
[2]  A. Bode, J. Tordoir, Vascular Access for Hemodialysis Therapy, in: Modelling and Control of Dialysis Sys- tems, Springer, 2013, pp. 235-303.
[3]  D. Santoro, F. Benedetto, P. Mondello, N. Pipitò, D. Barillà, F. Spinelli, C.A. Ricciardi, V. Cernaro, M. Buemi, Vascular access for hemodialysis: current per- spectives, International journal of nephrology and re- novascular disease, 7 (2014) 281.
[4]  B. Ene-Iordache, C. Semperboni, G. Dubini, A. Re- muzzi, Disturbed flow in a patient-specific arteriove- nous fistula for hemodialysis: multidirectional and re- ciprocating near-wall flow patterns, Journal of biomechanics, 48(10) (2015) 2195-2200.
[5]  M. Malovrh, Native arteriovenous fistula: preopera- tive evaluation, American journal of kidney diseases, 39(6) (2002) 1218-1225.
[6]  T.C. Rothuizen, C. Wong, P.H. Quax, A.J. van Zonneveld, T.J. Rabelink, J.I. Rotmans, Arteriovenous access failure: more than just intimal hyperplasia? Ne- phrology Dialysis Transplantation, 28(5) (2013) 1085- 1092.
[7] F. Curtolo, Nuova metodologia basata sull’elaborazione di immagini da Ultrasound® per la modellazione e la simulazione numerica della fistola artero-venosa. A novel protocol based on Ultrasound® imaging for patient specific AVF modelling and numerical simula- tion, (2017).
[8]  A.M. Malek, S.L. Alper, S. Izumo, Hemodynamic shear stress and its role in atherosclerosis, Jama, 282(21) (1999) 2035-2042.
[9]  Z. Kharboutly, V. Deplano, E. Bertrand, C. Legallais, Numerical and experimental study of blood flow through a patient-specific arteriovenous fistula used for hemodialysis, Medical engineering & physics, 32(2) (2010) 111-118.
[10]  K. Van Canneyt, T. Pourchez, S. Eloot, C. Guillame, A. Bonnet, P. Segers, P. Verdonck, Hemodynamic im- pact of anastomosis size and angle in side-to-end arte- riovenous fistulae: a computer analysis, The journal of vascular access, 11(1) (2010) 52-58.
[11] A. Niemann, J. Udesen, S. Thrysoe, J.V. Nygaard, E. Fründ, S.E. Petersen, J. Hasenkam, Can sites prone to flow induced vascular complications in av fistulas be assessed using computational fluid dynamics? Journal of biomechanics, 43(10) (2010) 2002-2009.
[12]  B. Ene-Iordache, A. Remuzzi, Disturbed flow in radi- al-cephalic arteriovenous fistulae for haemodialysis: low and oscillating shear stress locates the sites of ste- nosis, Nephrology Dialysis Transplantation, 27(1) (2011) 358-368.
[13] W.A.W. Hassan, K. Osman, M.R.A. Kadir, W.A.K.W. Abdullah, J. Haron, M.Z. Ngali, Effect of anastomosis angle on hemodynamic of side-to-end radiocephalic arteriovenous fistula (RCAVF), in: AIP Conference Proceedings, AIP, 2012, pp. 665-670.
[14]  J.E. Hull, B.V. Balakin, B.M. Kellerman, D.K. Wrols- tad, Computational fluid dynamic evaluation of the side-to-side anastomosis for arteriovenous fistula, Jour- nal of vascular surgery, 58(1) (2013) 187-193. e181.
[15]   L.D. Browne, M.T. Walsh, P. Griffin, Experimental and numerical analysis of the bulk flow parameters within an arteriovenous fistula, Cardiovascular engi- neering and technology, 6(4) (2015) 450-462.
[16]  J. de Andrade Silva, J. Karam-Filho, C.C.H. Borges, Computational analysis of anastomotic angles by blood flow conditions in side-to-end radio-cephalic fistulae used in hemodialysis, Journal of Biomedical Science and Engineering, 8(03) (2015) 131.
[17]  M. Bozzetto, B. Ene-Iordache, P. Brambilla, A. Re- muzzi, Characterization of the flow-field in a patient- specific model of arteriovenous fistula for hemodialy- sis, International CAE Conference, (2016).
[18]  Y. He, C.M. Terry, C. Nguyen, S.A. Berceli, Y.T.E. Shiu, A.K. Cheung, Serial analysis of lumen geometry and hemodynamics in human arteriovenous fistula for hemodialysis using magnetic resonance imaging and computational fluid dynamics, Journal of biomechan- ics, 46(1) (2013) 165-169.
[19]  A. Javadzadegan, N. Myo Lwin, M. Asyraf, A. Sim- mons, T. Barber, Analysis of Blood Flow Characteris- tics in a Model of a Mature Side‐to‐Side Arteriove- nous Fistula, Artificial organs, 41(11) (2017) E251-E262.
[20]  A. de Villiers, A. McBride, B. Reddy, T. Franz, B. Spottiswoode, A validated patient-specific FSI model for vascular access in haemodialysis, Biome- chanics and modeling in mechanobiology, 17(2) (2018) 479-497.
[21]   D.C. Wilcox, Turbulence modeling for CFD, DCW industries La Canada, CA, 1998.
[22]  A. Dewan, Tackling turbulent flows in engineering, Springer Science & Business Media, 2010.
[23]  A. Razavi, E. Shirani, M. Sadeghi, Numerical simu- lation of blood pulsatile flow in a stenosed carotid ar- tery using different rheological models, Journal of biomechanics, 44(11) (2011) 2021-2030.
[24]   N. Hamedi, S. Busch, Non-Newtonian Models in OpenFOAM Implementation of a non-Newtonian model, in, 2014.
[25]  Y.I. Cho, K.R. Kensey, Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial ves- sel. Part 1: Steady flows, Biorheology, 28(3-4) (1991) 241-262.
[26]  H.K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: the finite volume meth- od, Pearson Education, 2007.
[27]  S. Patankar, Numerical heat transfer and fluid flow, CRC press, 1980.
[28]    G. Holzinger, OpenFOAM A little User-Manua, (2018).
[29]  S.C. Park, R. Song, S. Kim, H.K. Kim, S.H. Kim, J. Lee, Fabrication of artificial arteriovenous fistula and analysis of flow field and shear stress by using μ-PIV technology, Journal of Mechanical Science and Tech- nology, 30(12) (2016) 5503-5511.