[1] A.M. Karmody, N. Lempert, “Smooth loop” arteriove- nous fistulas for hemodialysis, Surgery, 75(2) (1974) 238-242.
[2] A. Bode, J. Tordoir, Vascular Access for Hemodialysis Therapy, in: Modelling and Control of Dialysis Sys- tems, Springer, 2013, pp. 235-303.
[3] D. Santoro, F. Benedetto, P. Mondello, N. Pipitò, D. Barillà, F. Spinelli, C.A. Ricciardi, V. Cernaro, M. Buemi, Vascular access for hemodialysis: current per- spectives, International journal of nephrology and re- novascular disease, 7 (2014) 281.
[4] B. Ene-Iordache, C. Semperboni, G. Dubini, A. Re- muzzi, Disturbed flow in a patient-specific arteriove- nous fistula for hemodialysis: multidirectional and re- ciprocating near-wall flow patterns, Journal of biomechanics, 48(10) (2015) 2195-2200.
[5] M. Malovrh, Native arteriovenous fistula: preopera- tive evaluation, American journal of kidney diseases, 39(6) (2002) 1218-1225.
[6] T.C. Rothuizen, C. Wong, P.H. Quax, A.J. van Zonneveld, T.J. Rabelink, J.I. Rotmans, Arteriovenous access failure: more than just intimal hyperplasia? Ne- phrology Dialysis Transplantation, 28(5) (2013) 1085- 1092.
[7] F. Curtolo, Nuova metodologia basata sull’elaborazione di immagini da Ultrasound® per la modellazione e la simulazione numerica della fistola artero-venosa. A novel protocol based on Ultrasound® imaging for patient specific AVF modelling and numerical simula- tion, (2017).
[8] A.M. Malek, S.L. Alper, S. Izumo, Hemodynamic shear stress and its role in atherosclerosis, Jama, 282(21) (1999) 2035-2042.
[9] Z. Kharboutly, V. Deplano, E. Bertrand, C. Legallais, Numerical and experimental study of blood flow through a patient-specific arteriovenous fistula used for hemodialysis, Medical engineering & physics, 32(2) (2010) 111-118.
[10] K. Van Canneyt, T. Pourchez, S. Eloot, C. Guillame, A. Bonnet, P. Segers, P. Verdonck, Hemodynamic im- pact of anastomosis size and angle in side-to-end arte- riovenous fistulae: a computer analysis, The journal of vascular access, 11(1) (2010) 52-58.
[11] A. Niemann, J. Udesen, S. Thrysoe, J.V. Nygaard, E. Fründ, S.E. Petersen, J. Hasenkam, Can sites prone to flow induced vascular complications in av fistulas be assessed using computational fluid dynamics? Journal of biomechanics, 43(10) (2010) 2002-2009.
[12] B. Ene-Iordache, A. Remuzzi, Disturbed flow in radi- al-cephalic arteriovenous fistulae for haemodialysis: low and oscillating shear stress locates the sites of ste- nosis, Nephrology Dialysis Transplantation, 27(1) (2011) 358-368.
[13] W.A.W. Hassan, K. Osman, M.R.A. Kadir, W.A.K.W. Abdullah, J. Haron, M.Z. Ngali, Effect of anastomosis angle on hemodynamic of side-to-end radiocephalic arteriovenous fistula (RCAVF), in: AIP Conference Proceedings, AIP, 2012, pp. 665-670.
[14] J.E. Hull, B.V. Balakin, B.M. Kellerman, D.K. Wrols- tad, Computational fluid dynamic evaluation of the side-to-side anastomosis for arteriovenous fistula, Jour- nal of vascular surgery, 58(1) (2013) 187-193. e181.
[15] L.D. Browne, M.T. Walsh, P. Griffin, Experimental and numerical analysis of the bulk flow parameters within an arteriovenous fistula, Cardiovascular engi- neering and technology, 6(4) (2015) 450-462.
[16] J. de Andrade Silva, J. Karam-Filho, C.C.H. Borges, Computational analysis of anastomotic angles by blood flow conditions in side-to-end radio-cephalic fistulae used in hemodialysis, Journal of Biomedical Science and Engineering, 8(03) (2015) 131.
[17] M. Bozzetto, B. Ene-Iordache, P. Brambilla, A. Re- muzzi, Characterization of the flow-field in a patient- specific model of arteriovenous fistula for hemodialy- sis, International CAE Conference, (2016).
[18] Y. He, C.M. Terry, C. Nguyen, S.A. Berceli, Y.T.E. Shiu, A.K. Cheung, Serial analysis of lumen geometry and hemodynamics in human arteriovenous fistula for hemodialysis using magnetic resonance imaging and computational fluid dynamics, Journal of biomechan- ics, 46(1) (2013) 165-169.
[19] A. Javadzadegan, N. Myo Lwin, M. Asyraf, A. Sim- mons, T. Barber, Analysis of Blood Flow Characteris- tics in a Model of a Mature Side‐to‐Side Arteriove- nous Fistula, Artificial organs, 41(11) (2017) E251-E262.
[20] A. de Villiers, A. McBride, B. Reddy, T. Franz, B. Spottiswoode, A validated patient-specific FSI model for vascular access in haemodialysis, Biome- chanics and modeling in mechanobiology, 17(2) (2018) 479-497.
[21] D.C. Wilcox, Turbulence modeling for CFD, DCW industries La Canada, CA, 1998.
[22] A. Dewan, Tackling turbulent flows in engineering, Springer Science & Business Media, 2010.
[23] A. Razavi, E. Shirani, M. Sadeghi, Numerical simu- lation of blood pulsatile flow in a stenosed carotid ar- tery using different rheological models, Journal of biomechanics, 44(11) (2011) 2021-2030.
[24] N. Hamedi, S. Busch, Non-Newtonian Models in OpenFOAM Implementation of a non-Newtonian model, in, 2014.
[25] Y.I. Cho, K.R. Kensey, Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial ves- sel. Part 1: Steady flows, Biorheology, 28(3-4) (1991) 241-262.
[26] H.K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: the finite volume meth- od, Pearson Education, 2007.
[27] S. Patankar, Numerical heat transfer and fluid flow, CRC press, 1980.
[28] G. Holzinger, OpenFOAM A little User-Manua, (2018).
[29] S.C. Park, R. Song, S. Kim, H.K. Kim, S.H. Kim, J. Lee, Fabrication of artificial arteriovenous fistula and analysis of flow field and shear stress by using μ-PIV technology, Journal of Mechanical Science and Tech- nology, 30(12) (2016) 5503-5511.