[1] T.R. Harrison, D.L. Kasper, A.S. Fauci, Harrison's Principles of Internal Medicine 19th Ed, McGraw-Hill AccessMedicine, 2015.
[2] M.S. Kramer, J. Rouleau, T.F. Baskett, K.S. Joseph, Amniotic-fluid embolism and medical induction of labour: a retrospective, population-based cohort study, Lancet, 368(9545) (2006) 1444-1448.
[3] M.A. Mirski, A.V. Lele, L. Fitzsimmons, T.J.K. Toung, Diagnosis and Treatment of Vascular Air Embolism, Anesthesiology, 106(1) (2007) 164-177.
[4] S. Akhtar, Fat Embolism, Anesthesiology Clinics, 27(3) (2009) 533-550.
[5] V. Kumar, A.K. Abbas, J.C. Aster, Robbins basic pathology e-book, Elsevier Health Sciences, 2017.
[6] C.F. Dewey, S.R. Bussolari, M.A. Gimbrone, P.F. Davies, The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress, Journal of Biomechanical Engineering, 103(3) (1981) 177-177.
[7] E. Tzima, M. Irani-Tehrani, W.B. Kiosses, E. DeJana, D.a. Schultz, B. Engelhardt, G. Cao, H. DeLisser, M.a. Schwartz, A mechanosensory complex that mediates the endothelial cell response to fluid shear stress, Nature, 437(7057) (2005) 426-431.
[8] O. Traub, B.C. Berk, Laminar Shear Stress : Mechanisms by Which Endothelial Cells Transduce an Atheroprotective Force, Arteriosclerosis, Thrombosis, and Vascular Biology, 18(5) (1998) 677-685.
[9] K.C. Gersh, C. Nagaswami, J.W. Weisel, Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes, Thrombosis and Haemostasis, 102(6) (2009) 1169-1175.
[10] M.M. Aleman, B.L. Walton, J.R. Byrnes, A.S. Wolberg, Fibrinogen and red blood cells in venous thrombosis, Thrombosis Research, 133(SUPPL. 1) (2014) S38-S40.
[11] J.D. Barr, A.K. Chauhan, G.V. Schaeffer, J.K. Hansen, D.G. Motto, Red blood cells mediate the onset of thrombosis in the ferric chloride murine model, Blood, 121(18) (2013) 3733-3741.
[12] P.S. Olson, U. Ljungqvist, S.-E. Bergentz, I.N. Stainless, I.N. The, Thrombus formation in stainless steel tubes used as vascular implants in the dog, Thrombosis Research, 4(2) (1974) 271-283.
[13] P. Sigvard Olson, U. Ljungqvist, S.E. Bergentz, Analysis of platelet, red cell and fibrin content in experimental arterial and venous thrombi, Thrombosis Research, 5(1) (1974) 1-19.
[14] J. Hirsh, M.R. Buchanan, F.A. Ofosu, J. Weitz, Evolution of Thrombosis, Annals of the New York Academy of Sciences, 516(1 Blood in Cont) (1987) 586-604.
[15] J.J. Hathcock, Flow effects on coagulation and thrombosis, Arteriosclerosis, Thrombosis, and Vascular Biology, 26(8) (2006) 1729-1737.
[16] A.J. Reininger, Platelet function under high shear conditions, Hämostaseologie, 29(1) (2009) 21-22, 24.
[17] C. Schmitt, A. Hadj Henni, G. Cloutier, Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior, Journal of Biomechanics, 44(4) (2011) 622-629.
[18] A.M. Malek, S. Izumo, S.L. Alper, Modulation by pathophysiological stimuli of the shear stress-induced up-regulation of endothelial nitric oxide synthase expression in endothelial cells, Neurosurgery, 45(2) (1999) 334-335.
[19] A.B. Fisher, S. Chien, A.I. Barakat, R.M. Nerem, Endothelial cellular response to altered shear stress, American journal of physiology. Lung cellular and molecular physiology, 281(3) (2001) L529-533.
[20] A.B. Fisher, A.B. Al-Mehdi, Y. Manevich, Shear stress and endothelial cell activation, Critical care medicine, 30(5 Suppl) (2002) S192-197.
[21] M. Noris, M. Morigi, R. Donadelli, S. Aiello, M. Foppolo, M. Todeschini, S. Orisio, G. Remuzzi, A. Remuzzi, Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions, Circulation research, 76(4) (1995) 536-543.
[22] Y.C. Fung, S.Q. Liu, Elementary Mechanics of the Endothelium of Blood Vessels, Journal of Biomechanical Engineering, 115(1) (1993) 1-1.
[23] K.S. Sakariassen, L. Orning, V.T. Turitto, The impact of blood shear rate on arterial thrombus formation, Future science OA, 1(4) (2015) FSO30-FSO30.
[24] P. Riha, X. Wang, R. Liao, J.F. Stoltz, Elasticity and fracture strain of whole blood clots, Clinical hemorheology and microcirculation, 21(1) (1999) 4549.
[25] T.C. Hung, R.M. Hochmuth, J.H. Joist, S. Sutera, Shear-induced aggregation and lysis of platelets, in, 1976, pp. 258-290.
[26] M.J. Maxwell, E. Westein, W.S. Nesbitt, S. Giuliano, S.M. Dopheide, S.P. Jackson, Identification of a 2-stage platelet aggregation process mediating sheardependent thrombus formation, Blood, 109(2) (2007) 566-576.
[27] B. Vahidi, N. Fatouraee, Numerical Analysis of Fully Blocked Human Common Carotid Artery Resulted from Arterial Thromboembolism Using a Contact Finite Element Model (in persian), Iranian Journal of Biomedical Engineering, 4 (2009) 285-296.
[28] B. Vahidi, N. Fatouraee, Large deforming buoyant embolus passing through a stenotic common carotid artery: A computational simulation, Journal of Biomechanics, 45(7) (2012) 1312-1322.
[29] E. Abolfazli, B. Vahidi, N. Fatouraee, A FSI Simulation of Thromboembolism in Carotid Artery Bifurcation: Roles of Bifurcation Dividing Angle on Arterial Hemodynamics (in persian), Amirkabir Journal of Mechanical Engineering, 45(1) (2013) 29.83
[30] E. Abolfazli, N. Fatouraee, B. Vahidi, Dynamics of motion of a clot through an arterial bifurcation: a finite element analysis, Fluid Dynamics Research, 46(5) (2014) 055505-055505.
[31] D. Mukherjee, S.C. Shadden, Inertial particle dynamics in large artery flows – Implications for modeling arterial embolisms, Journal of Biomechanics, 52 (2017) 155-164.
[32] D. Mukherjee, J. Padilla, S.C. Shadden, Numerical investigation of fluid–particle interactions for embolic stroke, Theoretical and Computational Fluid Dynamics, 30(1-2) (2016) 23-39.
[33] F. Khodaee, N. Fatouraee, B. Vahidi, Analyzing the effect of Deformability of Blood Clots on their Motion in the Cerebrovascular Arteries, Modares Mechanical Engineering, 16(1) (2016) 1-9.
[34] F. Khodaee, B. Vahidi, N. Fatouraee, Analysis of mechanical parameters on the thromboembolism using a patient-specific computational model, Biomechanics and Modeling in Mechanobiology, 15(5) (2016) 12951305.
[35] B.T. Tang, S.S. Pickard, F.P. Chan, P.S. Tsao, C.A. Taylor, J.A. Feinstein, Wall Shear Stress is Decreased in the Pulmonary Arteries of Patients with Pulmonary Arterial Hypertension: An Image-Based, Computational Fluid Dynamics Study, Pulmonary Circulation, 2(4) (2012) 470-476.
[36] J.E. Hall, A.C. Guyton, Guyton and Hall textbook of medical physiology, Saunders Elsevier, Philadelphia, PA :, 2011.
[37] T.J. Pedley, The Fluid Mechanics of Large Blood Vessels, Cambridge University Press, Cambridge, .0891
[38] S.A. Berger, L.D. Jou, Flows in Stenotic Vessels, Annual Review of Fluid Mechanics, 32(1) (2000) .283-743
[39] Y. Cadroy, S.R. Hanson, Effects of red blood cell concentration on hemostasis and thrombus formation in a primate model, Blood, 75(11) (1990) 2185-2193.
[40] J.E. French, The structure of natural and experimental thrombi, Ann R Coll Surg Engl, 36(June) (1964) 191-200.
[41] N. Tynngård, T. Lindahl, S. Ramström, G. Berlin, Effects of different blood components on clot retraction analysed by measuring elasticity with a free oscillating rheometer, Platelets, 17(8) (2006) 545-554. [42] A.U. Manual, manual2006adina,ADINA R\&D, Watertown, Mass, (2006).
[43] K.-J. Bathe, H. Zhang, A mesh adaptivity procedure for CFD and fluid-structure interactions, Computers & Structures, 87(11-12) (2009) 604-617.
[44] V. Castelain, P. Hervé, Y. Lecarpentier, P. Duroux, G. Simonneau, D. Chemla, Pulmonary artery pulse pressure and wave reflection in chronic pulmonary thromboembolism and primary pulmonary hypertension, Journal of the American College of Cardiology, 37(4) (2001) 1085-1092.
[45] K.-j. Bathe, Z. Hou, S. Ji, Finite element analysis of fluid flows fully coupled with structural interactions, Computers & Structures, 72(1-3) (1999) 1-16.
[46] J.W. Lankhaar, M.B.M. Hofman, J.T. Marcus, J.J.M. Zwanenburg, T.J.C. Faes, A. Vonk-Noordegraaf, Correction of phase offset errors in main pulmonary artery flow quantification, Journal of Magnetic Resonance Imaging, 22(1) (2005) 73-79.
[47] C.S. Ng, A.U. Wells, S. Padley, A CT sign of chronic pulmonary arterial hypertension: the ratio of main pulmonary artery to aortic diameter, Journal of thoracic imaging, 14(4) (1999) 270-278.
[48] S. Karazincir, A. Balci, E. Seyfeli, S. Akoǧlu, C. Babayiǧit, F. Akgül, F. Yalçin, E. Eǧilmez, CT assessment of main pulmonary artery diameter, Diagnostic and Interventional Radiology, 14(2) (2008) 72-74.
[49] V.O. Kheyfets, L. Rios, T. Smith, T. Schroeder, J. Mueller, S. Murali, D. Lasorda, A. Zikos, J. Spotti, J.J. Reilly, E.A. Finol, Patient-specific computational modeling of blood flow in the pulmonary arterial circulation, Computer Methods and Programs in Biomedicine, 120(2) (2015) 88-101.
[50] V. Kheyfets, M. Thirugnanasambandam, L. Rios, D. Evans, T. Smith, T. Schroeder, J. Mueller, S. Murali, D. Lasorda, J. Spotti, E. Finol, The Role of Wall Shear Stress in the Assessment of Right Ventricle Hydraulic Workload, Pulmonary Circulation, 5(1) (2015) 90100.
[51] M. Ariane, D. Vigolo, A. Brill, F.G.B. Nash, M. Barigou, A. Alexiadis, Using Discrete Multi-Physics for studying the dynamics of emboli in flexible venous valves, Computers and Fluids, 166 (2018) 57-63.
[52] S.L. Wang, H.A. Timmermans, J.A. Kaufman, Estimation of trapped thrombus volumes in retrievable inferior vena cava filters: a visual scale, Journal of Vascular and Interventional Radiology, 18(2) (2007) 273-276.
[53] V. Fineschi, E. Turillazzi, M. Neri, C. Pomara, I. Riezzo, Histological age determination of venous thrombosis: a neglected forensic task in fatal pulmonary thrombo-embolism, Forensic science international, 186(1-3) (2009) 22-28.
[54] J.H. Ryu, P.A. Pellikka, D.A. Froehling, S.G. Peters, G.L. Aughenbaugh, Saddle pulmonary embolism diagnosed by CT angiography: frequency, clinical features and outcome, Respiratory medicine, 101(7) (2007) 1537-1542.
[55] G. Walcott, H.B. Burchell, A.L. Brown, Primary pulmonary hypertension, The American Journal of Medicine, 49(1) (1970) 70-79.