An Image-Based Computational Simulation of Pulmonary Embolism Using Radiological Images

Document Type : Research Article

Authors

1 MSc student/University of Tehran

2 Associate professor/University of Tehran

3 Department of Pulmonary Medicine, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Pulmonary embolism is one of the most prevalent diseases amid hospitalized patients. However, this phenomenon has not been investigated in the field of biomechanics so far and insufficient information is available about hemodynamic factors affecting this phenomenon. In this research, a patient-specific anatomical model of pulmonary arteries has been constructed from computed tomography images. Navier-Stokes equations, as the governing equations, have been solved in an arbitrary Lagrangian-Eulerian formulation, and the fluid-structure interactions method was used. Viscoelastic parameters were adopted in accordance with the red blood clot (stemmed from deep veins) properties for the structure model (emboli). Results revealed that the maximum shear stress magnitude applied on the embolus was about 957 Pa that was occurred when the clot plow into the wall of the artery. In addition, the average shear stress of the arterial wall was reduced about 42 percent due to the presence of the embolus. This reduction may lead to such phenomena as high pulmonary arterial resistance, low pulmonary arterial compliance, endothelial dysfunction, and consequently cause right heart dysfunction and pulmonary arterial hypertension if different clots repeatedly pass through the arteries.

Keywords

Main Subjects


[1]  T.R. Harrison, D.L. Kasper, A.S. Fauci, Harrison's Principles of Internal Medicine 19th Ed, McGraw-Hill AccessMedicine, 2015.
[2]  M.S. Kramer, J. Rouleau, T.F. Baskett, K.S. Joseph, Amniotic-fluid embolism and medical induction of labour: a retrospective, population-based cohort study, Lancet, 368(9545) (2006) 1444-1448.
[3]  M.A. Mirski, A.V. Lele, L. Fitzsimmons, T.J.K. Toung, Diagnosis and Treatment of Vascular Air Embolism, Anesthesiology, 106(1) (2007) 164-177.
[4] S. Akhtar, Fat Embolism, Anesthesiology Clinics, 27(3) (2009) 533-550.
[5]  V. Kumar, A.K. Abbas, J.C. Aster, Robbins basic pathology e-book, Elsevier Health Sciences, 2017.
[6] C.F. Dewey, S.R. Bussolari, M.A. Gimbrone, P.F. Davies, The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress, Journal of Biomechanical Engineering, 103(3) (1981) 177-177.
[7] E. Tzima, M. Irani-Tehrani, W.B. Kiosses, E. DeJana, D.a. Schultz, B. Engelhardt, G. Cao, H. DeLisser, M.a. Schwartz, A mechanosensory complex that mediates the endothelial cell response to fluid shear stress, Nature, 437(7057) (2005) 426-431.
[8] O. Traub, B.C. Berk, Laminar Shear Stress : Mechanisms by Which Endothelial Cells Transduce an Atheroprotective Force, Arteriosclerosis, Thrombosis, and Vascular Biology, 18(5) (1998) 677-685.
[9]  K.C. Gersh, C. Nagaswami, J.W. Weisel, Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes, Thrombosis and Haemostasis, 102(6) (2009) 1169-1175.
[10] M.M. Aleman, B.L. Walton, J.R. Byrnes, A.S. Wolberg, Fibrinogen and red blood cells in venous thrombosis, Thrombosis Research, 133(SUPPL. 1) (2014) S38-S40.
[11] J.D. Barr, A.K. Chauhan, G.V. Schaeffer, J.K. Hansen, D.G. Motto, Red blood cells mediate the onset of thrombosis in the ferric chloride murine model, Blood, 121(18) (2013) 3733-3741.
[12] P.S. Olson, U. Ljungqvist, S.-E. Bergentz, I.N. Stainless, I.N. The, Thrombus formation in stainless steel tubes used as vascular implants in the dog, Thrombosis Research, 4(2) (1974) 271-283.
[13]   P. Sigvard Olson, U. Ljungqvist, S.E. Bergentz, Analysis of platelet, red cell and fibrin content in experimental arterial and venous thrombi, Thrombosis Research, 5(1) (1974) 1-19.
[14] J. Hirsh, M.R. Buchanan, F.A. Ofosu, J. Weitz, Evolution of Thrombosis, Annals of the New York Academy of Sciences, 516(1 Blood in Cont) (1987) 586-604.
[15] J.J. Hathcock, Flow effects on coagulation and thrombosis, Arteriosclerosis, Thrombosis, and Vascular Biology, 26(8) (2006) 1729-1737.
[16] A.J. Reininger, Platelet function under high shear conditions, Hämostaseologie, 29(1) (2009) 21-22, 24.
[17]    C. Schmitt, A. Hadj Henni, G. Cloutier, Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior, Journal of Biomechanics, 44(4) (2011) 622-629.
[18]  A.M. Malek, S. Izumo, S.L. Alper, Modulation by pathophysiological stimuli of the shear stress-induced up-regulation of endothelial nitric oxide synthase expression in endothelial cells, Neurosurgery, 45(2) (1999) 334-335.
[19]  A.B. Fisher, S. Chien, A.I. Barakat, R.M. Nerem, Endothelial cellular response to altered shear stress, American journal of physiology. Lung cellular and molecular physiology, 281(3) (2001) L529-533.
[20]  A.B. Fisher, A.B. Al-Mehdi, Y. Manevich, Shear stress and endothelial cell activation, Critical care medicine, 30(5 Suppl) (2002) S192-197.
[21] M. Noris, M. Morigi, R. Donadelli, S. Aiello, M. Foppolo, M. Todeschini, S. Orisio, G. Remuzzi, A. Remuzzi, Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions, Circulation research, 76(4) (1995) 536-543.
[22]  Y.C. Fung, S.Q. Liu, Elementary Mechanics of the Endothelium of Blood Vessels, Journal of Biomechanical Engineering, 115(1) (1993) 1-1.
[23] K.S. Sakariassen, L. Orning, V.T. Turitto, The impact of blood shear rate on arterial thrombus formation, Future science OA, 1(4) (2015) FSO30-FSO30.
[24]    P. Riha, X. Wang, R. Liao, J.F. Stoltz, Elasticity and fracture strain of whole blood clots, Clinical hemorheology and microcirculation, 21(1) (1999) 4549.
[25] T.C. Hung, R.M. Hochmuth, J.H. Joist, S. Sutera, Shear-induced aggregation and lysis of platelets, in, 1976, pp. 258-290.
[26]  M.J. Maxwell, E. Westein, W.S. Nesbitt, S. Giuliano, S.M. Dopheide, S.P. Jackson, Identification of a 2-stage platelet aggregation process mediating sheardependent thrombus formation, Blood, 109(2) (2007) 566-576.
[27] B. Vahidi, N. Fatouraee, Numerical Analysis of Fully Blocked Human Common Carotid Artery Resulted from Arterial Thromboembolism Using a Contact Finite Element Model (in persian), Iranian Journal of Biomedical Engineering, 4 (2009) 285-296.
[28] B. Vahidi, N. Fatouraee, Large deforming buoyant embolus passing through a stenotic common carotid artery: A computational simulation, Journal of Biomechanics, 45(7) (2012) 1312-1322.
[29] E. Abolfazli, B. Vahidi, N. Fatouraee, A FSI Simulation of Thromboembolism in Carotid Artery Bifurcation: Roles of Bifurcation Dividing Angle on Arterial Hemodynamics (in persian), Amirkabir Journal of Mechanical Engineering, 45(1) (2013) 29.83
[30]  E. Abolfazli, N. Fatouraee, B. Vahidi, Dynamics of motion of a clot through an arterial bifurcation: a finite element analysis, Fluid Dynamics Research, 46(5) (2014) 055505-055505.
[31] D. Mukherjee, S.C. Shadden, Inertial particle dynamics in large artery flows – Implications for modeling arterial embolisms, Journal of Biomechanics, 52 (2017) 155-164.
[32] D. Mukherjee, J. Padilla, S.C. Shadden, Numerical investigation of fluid–particle interactions for embolic stroke, Theoretical and Computational Fluid Dynamics, 30(1-2) (2016) 23-39.
[33] F. Khodaee, N. Fatouraee, B. Vahidi, Analyzing the effect of Deformability of Blood Clots on their Motion in the Cerebrovascular Arteries, Modares Mechanical Engineering, 16(1) (2016) 1-9.
[34] F. Khodaee, B. Vahidi, N. Fatouraee, Analysis of mechanical parameters on the thromboembolism using a patient-specific computational model, Biomechanics and Modeling in Mechanobiology, 15(5) (2016) 12951305.
[35] B.T. Tang, S.S. Pickard, F.P. Chan, P.S. Tsao, C.A. Taylor, J.A. Feinstein, Wall Shear Stress is Decreased in the Pulmonary Arteries of Patients with Pulmonary Arterial Hypertension: An Image-Based, Computational Fluid Dynamics Study, Pulmonary Circulation, 2(4) (2012) 470-476.
[36] J.E. Hall, A.C. Guyton, Guyton and Hall textbook of medical physiology, Saunders Elsevier, Philadelphia, PA :, 2011.
[37] T.J. Pedley, The Fluid Mechanics of Large Blood Vessels, Cambridge University Press, Cambridge, .0891
[38] S.A. Berger, L.D. Jou, Flows in Stenotic Vessels, Annual Review of Fluid Mechanics, 32(1) (2000) .283-743
[39]   Y. Cadroy, S.R. Hanson, Effects of red blood cell concentration on hemostasis and thrombus formation in a primate model, Blood, 75(11) (1990) 2185-2193.
[40]  J.E. French, The structure of natural and experimental thrombi, Ann R Coll Surg Engl, 36(June) (1964) 191-200.
[41]  N. Tynngård, T. Lindahl, S. Ramström, G. Berlin, Effects of different blood components on clot retraction analysed by measuring elasticity with a free oscillating rheometer, Platelets, 17(8) (2006) 545-554. [42] A.U. Manual, manual2006adina,ADINA R\&D, Watertown, Mass,  (2006).
[43]  K.-J. Bathe, H. Zhang, A mesh adaptivity procedure for CFD and fluid-structure interactions, Computers & Structures, 87(11-12) (2009) 604-617.
[44]  V. Castelain, P. Hervé, Y. Lecarpentier, P. Duroux, G. Simonneau, D. Chemla, Pulmonary artery pulse pressure and wave reflection in chronic pulmonary thromboembolism and primary pulmonary hypertension, Journal of the American College of Cardiology, 37(4) (2001) 1085-1092.
[45] K.-j. Bathe, Z. Hou, S. Ji, Finite element analysis of fluid flows fully coupled with structural interactions, Computers & Structures, 72(1-3) (1999) 1-16.
[46] J.W. Lankhaar, M.B.M. Hofman, J.T. Marcus, J.J.M. Zwanenburg, T.J.C. Faes, A. Vonk-Noordegraaf, Correction of phase offset errors in main pulmonary artery flow quantification, Journal of Magnetic Resonance Imaging, 22(1) (2005) 73-79.
[47] C.S. Ng, A.U. Wells, S. Padley, A CT sign of chronic pulmonary arterial hypertension: the ratio of main pulmonary artery to aortic diameter, Journal of thoracic imaging, 14(4) (1999) 270-278.
[48]  S. Karazincir, A. Balci, E. Seyfeli, S. Akoǧlu, C. Babayiǧit, F. Akgül, F. Yalçin, E. Eǧilmez, CT assessment of main pulmonary artery diameter, Diagnostic and Interventional Radiology, 14(2) (2008) 72-74.
[49]  V.O. Kheyfets, L. Rios, T. Smith, T. Schroeder, J. Mueller, S. Murali, D. Lasorda, A. Zikos, J. Spotti, J.J. Reilly, E.A. Finol, Patient-specific computational modeling of blood flow in the pulmonary arterial circulation, Computer Methods and Programs in Biomedicine, 120(2) (2015) 88-101.
[50] V. Kheyfets, M. Thirugnanasambandam, L. Rios, D. Evans, T. Smith, T. Schroeder, J. Mueller, S. Murali, D. Lasorda, J. Spotti, E. Finol, The Role of Wall Shear Stress in the Assessment of Right Ventricle Hydraulic Workload, Pulmonary Circulation, 5(1) (2015) 90100.
[51]  M. Ariane, D. Vigolo, A. Brill, F.G.B. Nash, M. Barigou, A. Alexiadis, Using Discrete Multi-Physics for studying the dynamics of emboli in flexible venous valves, Computers and Fluids, 166 (2018) 57-63.
[52]  S.L. Wang, H.A. Timmermans, J.A. Kaufman, Estimation of trapped thrombus volumes in retrievable inferior vena cava filters: a visual scale, Journal of Vascular and Interventional Radiology, 18(2) (2007) 273-276.
[53]  V. Fineschi, E. Turillazzi, M. Neri, C. Pomara, I. Riezzo, Histological age determination of venous thrombosis: a neglected forensic task in fatal pulmonary thrombo-embolism, Forensic science international, 186(1-3) (2009) 22-28.
[54] J.H. Ryu, P.A. Pellikka, D.A. Froehling, S.G. Peters, G.L. Aughenbaugh, Saddle pulmonary embolism diagnosed by CT angiography: frequency, clinical features and outcome, Respiratory medicine, 101(7) (2007) 1537-1542.
[55] G. Walcott, H.B. Burchell, A.L. Brown, Primary pulmonary hypertension, The American Journal of Medicine, 49(1) (1970) 70-79.