[1] J. Yao, Concept of structural control, Journal of the Structural Division, 98(st 7) (1972).
[2] J.N. Yang, A.K. Agrawal, Semi-active hybrid control systems for nonlinear buildings against near-field earthquakes, Engineering structures, 24(3) (2002) 271-280.
[3] T. Datta, Control of dynamic response of structures, Emerging Trends in Vibration and Noise Engineering, 1 (1996) 101.
[4] N. Fisco, H. Adeli, Smart structures: part I—active and semi-active control, Scientia Iranica, 18(3) (2011) 275-284.
[5] B. Samali, M. Al-Dawod, Performance of a five-storey benchmark model using an active tuned mass damper and a fuzzy controller, Engineering Structures, 25(13) (2003) 1597-1610.
[6] B. Samali, M. Al-Dawod, K.C. Kwok, F. Naghdy, Active control of cross wind response of 76-story tall building using a fuzzy controller, Journal of engineering mechanics, 130(4) (2004) 492-498.
[7] S. Pourzeynali, H. Lavasani, A. Modarayi, Active control of high rise building structures using fuzzy logic and genetic algorithms, Engineering Structures, 29(3) (2007) 346-357.
[8] L. Huo, G. Song, H. Li, K. Grigoriadis, Robust control design of active structural vibration suppression using an active mass damper, Smart materials and structures, 17(1) (2007) 015021.
[9] N. Fisco, H. Adeli, Smart structures: part II—hybrid control systems and control strategies, Scientia Iranica, 18(3) (2011) 285-295.
[10] R. Guclu, H. Yazici, Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers, Journal of Sound and Vibration, 318(1-2) (2008) 36-49.
[11] Y. Shen, A. Homaifar, D. Chen, Vibration control of flexible structures using fuzzy logic and genetic algorithms, in: Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No. 00CH36334), IEEE, 2000, pp. 448-452.
[12] W. Jung, W. Jeong, S. Hong, S.-B. Choi, Vibration control of a flexible beam structure using squeeze- mode ER mount, Journal of sound and vibration, 273(1-2) (2004) 185-199.
[13] R.-F. Fung, Y.-T. Liu, C.-C. Wang, Dynamic model of an electromagnetic actuator for vibration control of a cantilever beam with a tip mass, Journal of Sound and Vibration, 288(4-5) (2005) 957-980.
[14] R. GÜÇLÜ, Fuzzy logic control of vibrations of analytical multi-degree-of-freedom structural systems, Turkish Journal of Engineering and Environmental Sciences, 27(3) (2003) 157-168.
[15] R. Guclu, Sliding mode and PID control of a structural system against earthquake, Mathematical and Computer Modelling, 44(1-2) (2006) 210-217.
[16] R. Guclu, H. Yazici, Fuzzy logic control of a non- linear structural system against earthquake induced vibration, Journal of Vibration and Control, 13(11) (2007) 1535-1551.
[17] R. Guclu, H. Yazici, Seismic-vibration mitigation of a nonlinear structural system with an ATMD through a fuzzy PID controller, Nonlinear Dynamics, 58(3) (2009) 553.
[18] C. Collette, S. Chesne, Robust hybrid mass damper, Journal of Sound and Vibration, 375 (2016) 19-27.
[19] A.-A. Zamani, S. Tavakoli, S. Etedali, Fractional order PID control design for semi-active control of smart base-isolated structures: a multi-objective cuckoo search approach, ISA transactions, 67 (2017) 222-232.
[20] N.Aguirre, F. Ikhouane, J. Rodellar, Proportional-plus- integral semiactive control using magnetorheological dampers, Journal of Sound and Vibration, 330(10) (2011) 2185-2200.
[21] S. Etedali, M.R. Sohrabi, S. Tavakoli, Optimal PD/ PID control of smart base isolated buildings equipped with piezoelectric friction dampers, Earthquake Engineering and Engineering Vibration, 12(1) (2013) 39-54.
[22] S. Etedali, M.R. Sohrabi, S. Tavakoli, An independent robust modal PID control approach for seismic control of buildings, Journal homepage:
http://www. ojceu. ir/ main, 279 (2013) 291.
[23] R. Subasri, A. Natarajan, S. Sundaram, W. Jianliang, Neural aided discrete PID active controller for non- linear hysteretic base-isolation building, in: 2013 9th Asian Control Conference (ASCC), IEEE, 2013, pp. 1-8.
[24] S.M. Nigdeli, Effect of feedback on PID controlled active structures under earthquake excitations, Earthquakes and Structures, 6(2) (2014) 217-235.
[25] W. Yu, S. Thenozhi, X. Li, Stable Active Vibration Control System for Building Structures using PD/PID Control, IFAC Proceedings Volumes, 47(3) (2014) 4760-4765.
[26] S. Etedali, S. Tavakoli, M.R. Sohrabi, Design of a decoupled PID controller via MOCS for seismic control of smart structures, Earthquakes and Structures, 10(5) (2016) 1067-1087.
[27] M. Bozorgvar, S.M. Zahrai, Semi-active seismic control of buildings using MR damper and adaptive neural-fuzzy intelligent controller optimized with genetic algorithm, Journal of Vibration and Control, 25(2) (2019) 273-285.
[28] M. Braz-César, R. Barros, Optimization of a fuzzy logic controller for MR dampers using an adaptive neuro-fuzzy procedure, International Journal of Structural Stability and Dynamics, 17(05) (2017) 1740007.
[29] Z.Q. Gu, S.O. Oyadiji, Application of MR damper in structural control using ANFIS method, Computers & Structures, 86(3-5) (2008) 427-436.
[30] K.C. Schurter, P.N. Roschke, Neuro-fuzzy control of structures using magnetorheological dampers, in: Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148), IEEE, 2001, pp. 1097-1102.
[31] K.C. Schurter, P.N. Roschke, Neuro-fuzzy control of structures using acceleration feedback, Smart Materials and Structures, 10(4) (2001) 770-779.
[32] H. Pang, F. Liu, Z. Xu, Variable universe fuzzy control for vehicle semi-active suspension system with MR damper combining fuzzy neural network and particle swarm optimization, Neurocomputing, 306 (2018) 130-140.
[33] S.P. HADI, THE DESIGN OF THE HYBRID PID- ANFIS CONTROLLER FOR SPEED CONTROL OF BRUSHLESS DC MOTOR, Journal of Theoretical & Applied Information Technology, 71(3) (2015).
[34] D. Singh, Passenger body vibration control in active quarter car model using ANFIS based super twisting sliding mode controller, Simulation Modelling Practice and Theory, 89 (2018) 100-118.
[35] U.A. Shaikh, M.K. AlGhamdi, H.A. AlZaher, Novel product ANFIS-PID hybrid controller for buck converters, The Journal of Engineering, 2018(8) (2018) 730-734.
[36] A. Kharola, A PID BASED ANFIS & FUZZY CONTROL OF INVERTED PENDULUM ON INCLINED PLANE (IPIP), International Journal on Smart Sensing & Intelligent Systems, 9(2) (2016).
[37] M.I. AL-Saedi, H. Wu, H. Handroos, ANFIS and fuzzy tuning of PID controller for trajectory tracking of a flexible hydraulically driven parallel robot machine, Journal of automation and control engineering, 1(3) (2013) 70-77.
[38] D. Singh, Modeling and control of passenger body vibrations in active quarter car system: a hybrid ANFIS PID approach, International Journal of Dynamics and Control, 6(4) (2018) 1649-1662.
[39] R. Hussain, R. Massoud, M. Al-Mawaldi, ANFIS-PID control FES-supported sit-to-stand in paraplegics:(Simulation study), Journal of Biomedical Science and Engineering, 7(04) (2014) 208.
[40] R. Tomar, M. Qureshi, S. Shrivastava, Development of ANFIS Controller and PID Controller for Seismic Vibration Control of Structural System, International Journal of Advanced Engineering Research and Science, 3(11) (2016).
[41]J.-S. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE transactions on systems, man, and cybernetics, 23(3) (1993) 665-685.
[42]M.A. Shoorehdeli, M. Teshnehlab, A.K. Sedigh, M.A. Khanesar, Identification using ANFIS with intelligent hybrid stable learning algorithm approaches and stability analysis of training methods, Applied Soft Computing, 9(2) (2009) 833-850.
[43]J.-S.R. Jang, C.-T. Sun, E. Mizutani, Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [Book Review], IEEE Transactions on automatic control, 42(10) (1997) 1482-1484.
[44]S. Mirjalili, A. Lewis, The whale optimization algorithm, Advances in engineering software, 95 (2016) 51-67.
[45]M.L. James, G.M. Smith, J. Wolford, P. Whaley, Vibration of mechanical and structural systems: with microcomputer applications, Harper Collins, 1994.