بررسی اثر درز جوش طولی لوله در هنگام بازرسی فراصوتی لوله با امواج هدایت شده متقارن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران

2 دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی ، تهران

3 دانشکده مهندسی برق و الکترونیک، دانشگاه استرثکلاید، گلاسگو، انگلستان

چکیده

استفاده از امواج هدایت‌شده متقارن برای بازرسی‌غیرمخرب لوله‌ها، با توجه به ویژگی‌های منحصربه‌فرد این امواج، مورد توجه بسیاری قرار گرفته است. اغلب لوله‌های استفاده‌شده در خطوط انتقال سیالات فشار پایین دارای درز جوش طولی‌هستند. درز جوش طولی، ضخامت لوله را در ناحیه جوش نسبت به سایر نواحی غیریکنواخت می‌کند. در این مقاله، ابتدا انتشار مدهای متقارن طولی اول و دوم و مدمتقارن پیچشی اول امواج هدایت‌شده در لوله با استفاده از روش اجزای محدود شبیه‌سازی می‌شود و سپس اثر هندسه درز جوش طولی بر روی انتشار این مدها بررسی می‌گردد. بررسی انتشار موج مربوط به مد طولی دوم نشان می‌دهد که در اثر حضور درز جوش طولی، تقارن پروفیل زاویه‌ای مد طولی دومتغییری نمی‌کند.همچنین، درز جوش، اثرناچیزی برروی انتشار مد پیچشی اول دارد. بیشترین اثر خط جوش بر روی انتشار مد طولی اول است، بطوری‌که پروفیل زاویه‌ای این مددر حضور خط جوش از حالت تقارن خارج شده و دامنه این مددر ناحیه خط جوش به شدت کاهش می‌یابد.همین امر حساسیت عیب‌یابی با این مدرا در نواحی خط جوش کاهش می‌دهد. براساس نتایج بدست آمده، استفاده از دو مد طولی دوم و پیچشی اول برای بازرسی لوله‌های دارای درز جوش طولی مناسب‌تربه نظرمی‌رسد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Ultrasonic Guided Wave-Based Inspection of Straight Seam Welded Pipes

نویسندگان [English]

  • Mojtaba Asgari 1
  • Farhang Honarvar 2
  • Morteza Tabatabaeipour 3
1 Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
2 Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
3 Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G11XW, UK
چکیده [English]

Low-pressure fluid transmission lines are largely manufactured by cold rolling of a plate followed by resistance welding of the two edges of the plate. Consequently, these pipes have a straight weld seam along their length. In this paper, a finite element method is used for simulating the propagation of symmetric guided wave modes L(0,2), L(0,1) and T(0,1) in straight seam welded pipes. A comparison is made between the propagation of these wave modes in seamless and seam welded pipes. Results indicate that the angular amplitude profiles of the L(0,2) and T(0,1) modes do not change much in the presence of the seam weld. However, the presence of the straight seam weld significantly affects the propagation of the L(0,1) mode along the pipe. While the angular displacement profile for the L(0,2) and T(0,1) modes are almost symmetric, for the L(0,1) mode, the angular displacement profile shows high asymmetry. This asymmetric behavior impairs the sensitivity of this mode to the detection of defects in the proximity of the weld line. As a result, the guided wave modes L(0,2) and T(0,1) are considered to be suitable for inspection of straight seam welded pipes but L(0,1) is not recommended for this purpose.

کلیدواژه‌ها [English]

  • Ultrasonic guided wave؛ Longitudinal mode
  • Torsional mode
  • Straight weld-seam
  • Wave structure
[1] K. Masamura, Y. Nagahama, Manufacturing processes and products of steel pipes and tubes in JFE steel, JFE technical report, 7 (2006) 1-6.
[2]A.P. Institute, API Standard 1104: welding of pipelines and related facilities, American Petroleum Institute, .5002
[3] D. Alleyne, P. Cawley, The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducers, Journal of Nondestructive Evaluation, 15(1) (1996) 11.02
[4] M. Lowe, D. Alleyne, P. Cawley, The mode conversion of a guided wave by a part-circumferential notch in a pipe, Journal of Applied mechanics, 65(3) (1998) 649-656.
[5] A. Demma, P. Cawley, M. Lowe, A. Roosenbrand, The reflection of the fundamental torsional mode from cracks and notches in pipes, The Journal of the Acoustical Society of America, 114(2) (2003) 611-625.
[6] P. Wilcox, M. Lowe, P. Cawley, Long range Lamb wave inspection: the effect of dispersion and modal selectivity, in:  Review of Progress in Quantitative Nondestructive Evaluation, Springer, 1999, pp. 151-158.
[7]  A. Demma, P. Cawley, M. Lowe, A. Roosenbrand, B. Pavlakovic, The reflection of guided waves from notches in pipes: a guide for interpreting corrosion measurements, Ndt & E International, 37(3) (2004) 167-180.
[8] M.-f. Zheng, C. Lu, G.-z. Chen, P. Men, Modeling threedimensional ultrasonic guided wave propagation and scattering in circular cylindrical structures using finite element approach, Physics procedia, 22 (2011) 112-118.
[9] E. Leinov, M.J. Lowe, P. Cawley, Investigation of guided wave propagation and attenuation in pipe buried in sand, Journal of Sound and Vibration, 347 (2015) 96-114.
[10] M. Qi, P. Zhang, J. Ni, S. Zhou, Experiment and numerical simulation of ultrasonic guided wave propagation in bent pipe, Procedia Engineering, 130 (2015) 1603-1611.
[11] P.S. Lowe, R.M. Sanderson, N.V. Boulgouris, A.G. Haig, W. Balachandran, Inspection of cylindrical structures using the first longitudinal guided wave mode in isolation for higher flaw sensitivity, IEEE Sensors Journal, 16(3) (2016) 706-714.
[12] F. Seco, J.M. Martín, A. Jiménez, J.L. Pons, L. Calderón, R. Ceres, PCDISP: a tool for the simulation of wave propagation in cylindrical waveguides, in:  9th International Congress on Sound and Vibration, 2002.
[13] Ş. Sorohan, N. Constantin, M. Găvan, V. Anghel, Extraction of dispersion curves for waves propagating in free complex waveguides by standard finite element codes, Ultrasonics, 51(4) (2011) 503-515.
[14] P. Bocchini, A. Marzani, E. Viola, Graphical user interface for guided acoustic waves, Journal of Computing in Civil Engineering, 25(3) (2010) 202-210.
[15]  S. Fateri, P.S. Lowe, B. Engineer, N.V. Boulgouris, Investigation of ultrasonic guided waves interacting with piezoelectric transducers, IEEE Sensors Journal, 15(8) (2015) 4319-4328.
[16]  D. Alleyne, M. Lowe, P. Cawley, The reflection of guided waves from circumferential notches in pipes, Journal of Applied mechanics, 65(3) (1998) 635-641.
[17]  A. Marzani, Time–transient response for ultrasonic guided waves propagating in damped cylinders, International Journal of Solids and Structures, 45(25-26) (2008) 6347-6368.
[18]  P. Lowe, R. Sanderson, S. Pedram, N. Boulgouris, P. Mudge, Inspection of pipelines using the first longitudinal guided wave mode, Physics Procedia, 70 (2015) 338-342.
[19] A. Version, 6.13 User’s Manual, 2013, Dassault Systems Simulia Corp., Providence, RI, USA.
[20]  M. Jing, Guided Wave Propagation and Focusing in Viscoelastic Multilayered Hollow Cylinders, Ph. D thesis, Engineering Mechanics, The Pennsylvania State University, 2008.
[21]  T. Furukawa, I. Komura, Simulation and visualization of guided wave propagation by large-scale 3D FEM, EJ. Adv. Maint, 3 (2011) 92-101.
[22]  J. Li, J.L. Rose, Natural beam focusing of nonaxisymmetric guided waves in large-diameter pipes, Ultrasonics, 44(1) (2006) 35-45.
[23]  X. Zhang, Z. Tang, F. Lü, X. Pan, Excitation of dominant flexural guided waves in elastic hollow cylinders using time delay circular array transducers, Wave Motion, 62 (2016) 41-54.
[24] M.H. El-Sayed, Grooving corrosion of seam welded oil pipelines, Case Studies in Engineering Failure Analysis, . 2(2)(2014)84-90.
[25]  M. Chapetti, J. Otegui, J. Motylicki, Fatigue assessment of an electrical resistance welded oil pipeline, International journal of fatigue, 24(1) (2002) 21-28.