[1] B.B. Kanbur, L. Xaing, S. Dubey, F.H. Choo, F. Duan, Cold utilization systems of LNG: A review, Renewable and Sustainable Energy Reviews, 79 (2017) 1171–1188.
[2] A. Atienza-Márquez, J.C. Bruno, A. Coronas, Cold recovery from LNG-regasification for polygeneration applications, Applied Thermal Engineering, 132 (2018) 463-478.
[3] G. R. Gómez, R. F. Garcia, J. R. Gómez, J. C. Carril, Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process, Renewable and Sustainable Energy Reviews, 38 (2014) 781–795.
[4] Z. Sun, F Xu, S. Wang, J. Lai, K. Lin, Comparative study of Rankine cycle configurations utilizing LNG cold energy under different NG distribution pressures, Energy, 139 (2017) 380-393.
[5] M. Badami, J.C. Bruno, A. Coronas, G. Fambri, Analysis of different combined cycles and working fluids for LNG exergy recovery during regasification, Energy, 159 (2018) 373-384.
[6] H. Sun, H. Zhu, F. Liu, H. Ding, Simulation and optimization of a novel Rankine power cycle for recovering cold energy from liquefied natural gas using a mixed working fluid, Energy, 70 (3) (2014) 317-324.
[7] U. Lee, A. Mitsos, Optimal multi component working fluid of organic Rankine cycle for exergy transfer from liquefied natural gas regasification, Energy, 127 (2017) 489-501.
[8] Z. Sun, J. Lai, S. Wang, T. Wang, Thermodynamic optimization and comparative study of different ORC configurations utilizing the exergies of LNG and low-grade heat of different temperatures, Energy, 147 (2018) 688-700
[9] T. Sung, K.C. Kim, Thermodynamic analysis of a novel dual-loop organic Rankine cycle for engine waste heat and LNG cold, Applied Thermal Engineering, 100 (2016) 1031-41.
[10] I.H. Choi, S. Lee, Y. Seo, D. Chang, Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery, Energy, 61 (2013) 179–95.
[11] R.F. García, J.C. Carril, J.R. Gomez, M.R. Gomez, combined cascaded Rankine and direct expander-based power units using LNG (liquefied natural gas) cold as heat sink in LNG regasification, Energy, 105 (2016) 16-24.
[12] P.A. Ferreira, I. Catarino, D. Vaz, Thermodynamic analysis for working fluids comparison in Rankine-type cycles exploiting the cryogenic exergy in Liquefied Natural Gas (LNG) regasification, Applied Thermal Engineering, 121 (2017) 887-96.
[13] F. Xue, Y. Chen, Y. Ju, Design and optimization of a novel cryogenic Rankine power generation system employing binary and ternary mixtures as working fluids based on the cold exergy utilization of liquefied natural gas (LNG), Energy, 138 (2017) 706-720.
[14] J. Bao, Y. Lin, R. Zhang, N. Zhang, G. He, strengthening power generation efficiency utilizing liquefied natural gas cold energy by a novel two-stage condensation Rankine cycle (TCRC) system, Energy Convers Manag, 143 (2017) 312-25.
[15] K. Kim, U. Lee, C. Kim, C. Han, Design and optimization of cascade organic Rankine cycle for recovering cryogenic energy from liquefied natural gas using binary working fluid, Energy, 88 (2015) 304-313.
[16] G. Venkatarathnam, Cryogenic Mixed Refrigerant Processes, New York, Springer, 2013.
[17] H. Yu, D. Kim, T. Gundersen, A study of working fluids for Organic Rankine Cycles (ORCs) operating across and below ambient temperature to utilize Liquefied Natural Gas (LNG) cold energy, Energy, 167 (2019) 730-739.
[18] J. Bao, R. Zhang, Y. Lin, N. Zhang, X. Zhang, G. He, Simultaneous optimization of system structure and working fluid for the three-stage condensation Rankine cycle utilizing LNG cold energy, Applied Thermal Engineering, 140 (2018) 120–130.
[19] J. Pospíšila, P. Charvátb, O. Arsenyevac, L. Klimeša, M. Špiláčeka, J. J. Klemeša, Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage, Renewable and Sustainable Energy Reviews, 99 (2019) 1–15.
[20] A. Sadeghi, M.K. Parpinchi, S.A. Sadatsakak, M. Khanaki, Optimization of the two stage Rankine power generation cycle by using mixed working fluid for the use of cold energy liquefied natural gas, third national conference on air conditioning and thermal and refrigerating installations, (2017). (In Persian)
[21] A. Moradi, M. Mafi, M. Khanaki, Sensitivity analysis of peak-shaving natural gas liquefaction cycles to environmental and operational parameters, Modares Mechanical Engineering, 15 (2015) 287-298. (In Persian)
[22] M. Mehrpooya, M. Ashouri, A. Mohammadi, Thermoeconomic analysis and optimization of a regenerative two-stage organic Rankine cycle coupled with liquefied natural gas and solar energy, Energy,126 (2017) 899-914.
[23] A. Sadreddini, M.A. Ashjari, M. Fani, A. Mohammadi, Thermodynamic analysis of a new cascade ORC and transcritical CO2 cycle to recover energy from medium temperature heat source and liquefied natural gas, Energy Conversion and Management, 167 (2018) 9–20.
[24] J. Kennedy, R. Eberhart, Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks IV, (1995) 1942–1948.