مدل سازی عددی جریانهای دوفازی تراکم پذیر با مدل دوسیالی هیپربولیک دوفشاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشکده فنی مهندسی، گروه تبدیل انرژی، دانشگاه تربیت مدرس

2 دکتری مهندسی مکانیک، دانشکده فنی مهندسی، گروه تبدیل انرژی، دانشگاه تربیت مدرس

چکیده

مدل سازی عددی جریانهای دوفازی تراکم پذیر یکی از موضوعات چالش برانگیز و مهم در مسائل کاربردی و تحقیقاتی به شمار می رود. در این مسائل اثرات متقابل شاک که به عنوان یک ناپیوستگی در خواص سیال به حساب می آید با فصل مشترک دو فاز به عنوان یک ناپیوستگی دیگر، سبب بروز مشکلاتی در حل عددی و تسخیر دقیق ناپایداری های فصل مشترک می شود. هدف از این پژوهش تسخیر دقیق فصل مشترک و مطالعه تاثیرات متقابل شاک و فصل مشترک در جریانهای دوفازی گاز-گاز و گاز – مایع است. بدین منظور از حلگر ریمان HLLC و روش حل عددی گودونوف برای مدل دوسیالی هیپربولیک دوفشاری استفاده به عمل آمد و کد نویسی به صورت دوبعدی و با دقت مرتبه دو انجام شد. مسائل یک و دوبعدی متنوع دوفازی مانند شاک تیوبهای تراکمی و انبساطی، برخورد شاک و حباب R22 در هوا، مسئله انفجار زیر آب و اثرات متقابل برخورد شاک هیپرسونیک با ماخ 6 با یک ستون استوانه ای آب شبیه سازی شد. نتایج عددی بدست آمده تطابق عالی با نتایج تجربی و نتایج قبلی بدست آمده توسط محققین با روش های عددی زمان بر و مدلهای پیچیده دیگر دارد.

کلیدواژه‌ها


عنوان مقاله [English]

2D Numerical Modeling of Compressible Two-Phase Flows Using Hyperbolic Two Pressure Two-Fluid Model

نویسندگان [English]

  • MohammadReza Ansari 1
  • Abdolhosein Daramizadeh 2
1
2
چکیده [English]

ABSTRACT
Numerical modeling of compressible two-phase flow is a challenging and important subject in practical cases and research problems. In these problems, mutual effect of shock wave interaction creates a discontinuity in fluid properties and interface of two fluids as a second discontinuity lead to some difficulties in numerical approximations and estimating an accurate interface during hydro-dynamical capturing process. The main objective of this research is accurate capturing of the interface and numerical study of shock wave during gas-gas and gas-liquid interface of two-phase flows. For this purposes HLLC Riemann solver and Godunov numerical method was used for a hyperbolic two-pressure two-fluid model where programming was conducted in two-space dimensional with second order accuracy. Various one and two-dimensional problems were simulated such as compression and expansion shock tubes, shock wave interaction with R22/air bubble, underwater explosion and hypersonic shock with M=6 interaction with a cylindrical water column. The numerical results obtained in this attempt exhibit very good agreement with experimental results, as well as previous numerical results presented by other researchers based on other numerical methods.

کلیدواژه‌ها [English]

  • Two phase flow
  • hyperbolic two-fluid model
  • Compressible
  • Shock Wave
  • Godunov numerical scheme
  • and interface
[1] Scheffler, D and Zukas, J., “Practical aspects of numerical simulations of dynamic events: Material interfaces”, Int.J. Impact Eng., 24(8):821– 842, 2000.
[2] Pilliod, J. and Puckett, E., “Second-order accurate Volume-of-Fluid algorithms for tracking material interfaces”, J. Comput. Phys., 199:465– 502, 2004.
[3] Sethian, J.A., “Level Set Methods: Evolving Interfaces in Geometry” , Fluid.Mechanics, Computer Vision and MaterialScience. Cambridge University Press,1996.
[4] Osher, S., and Fedkiw, R., “Level set methods: An overview and some recent results.”, J. Comput. Phys., 169(2):463–502, 2001.
[5] Unverdi, S. and Tryggvason, G., “A front tracking method for viscous incompressible flows”, J. Comput. Phys.,100:25– 37, 1992.
[6] Terashima H., Tryggvason, G., “A front- tracking/ghost-fluid method for fluid interfaces in compressible flows”, J.Comput. Phys., 228: 4012- 4037, 2009.
[7] Terashima H., Tryggvason, G., “A front- tracking method with projected interface conditions for compressible multi-fluid flows”, Computers & Fluids 39: 1804–1814, 2010.
[8] Doneal, J., Huerta, A., Ponthot, J.P., and Rodriguez-Ferran, A., “Arbitrary Lagrangian -Eulerian Methods”, In E.Stein, R. de Borst, and T. J. Hughes,editors, Encyclopedia of Computational Mechanics, chapter 14. John Wiley &Sons, 2004.
[9] Anbarlooei, H.R, Mazaheri, K., “Moment of fluid interface reconstruction method in multi-material arbitrary Lagrangian Eulerian (MMALE) algorithms” , Comput.Methods Appl. Mech. Engrg. 198: 3782–
3794, 2009.
[10] Saurel, R. and Le Metayer, O., “A multiphase model for interfaces”, shocks,detonation waves and cavitation. J. Fluid Mech., 431:239– 271, 2001.
[11] Johnsen, E., Colonius, T., “Implementation of WENO schemes in compressible multicomponent flow problems”, J.Comput. Phys, 219: 715– 732, 2006.
[12] Kawai, S., Terashima, H., “A high- resolution scheme for compressible multicomponent flows With shock waves”,Int. J. Numer. Meth. Fluids , 2010.
[13] Johnsen E., “Spurious oscillations and conservation errors in interface-capturing schemes”, Annual Research Briefs 2008,Center for Turbulence Research, NASA Ames and Stanford University, 115– 126,
2008.
[14] Chang, C- H., Liou, M.-S., “A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM +-up scheme”, J. Comput. Phys. 225 : 840– 873, 2007.
[15] Abgrall, R., “How to prevent pressure oscillations in multi-component flow calculations: A quasi conservative approach”, J. Comput. Phys., 125(1):150–160, 1996.
[16] Shyue, K.-M., “An efficient shock-capturing algorithm for compressible multi-component problems”, J. Comp. Phys., 142:208– 242, 1998.
[17] Shyue, K.-M., “A high-resolution mapped grid algorithm for compressible multiphase flow problems”, J. Comput. Phys. 229: 8780– 8801, 2010.
[18] Saurel, R., Abgrall, R., “A multiphase Godunov method for compressbile multifluid and multiphase flows”, J. Comput. Phys., 150(2):425– 467, 1999.
[19] Castro C. E., Toro E. F., “A Riemann solver and upwind methods for a two-phase flow model non-conservative form”, Int. J. Numer. Meth. Fluids 50:275– 307, 2006.
[20] Munkejord, S. T., “Comparison of Roe-type methods for solving the two-fluid model with and without pressure relaxation”, Computers & Fluids 36:1061–1080, 2007.
[21] Munkejord, S. T., “A Numerical Study of Two-Fluid Models with Pressure and Velocity Relaxation”, Adv. Appl. Math. Mech., 2: 131- 159, 2010.
[22] Tokareva S.A., Toro E.F., “HLLC-type Riemann solver for the Baer–Nunziato equations of compressible two-phase flow” , Journal of Computational Physics 229: 3573– 3604, 2010.
[23] Dumbser M., Toro E.F., “A Simple Extension of the Osher Riemann Solver to Non-conservative Hyperbolic Systems”, J. Sci. Comput.، DOI 10.1007/s10915-010-9400- 3, 2010.
[24] Kapila, R. Menikoff, J. Bdzil, S. Son, and D. Stewart., “Two-phase modeling of DDT in granular materials: Reduced equations”, Phys. Fluid, 13:3002– 3024, 2001.
[25] Saurel, R., Petitpas, F., and Berry, R. A., “Simple and efficient relaxation methods
for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures”, J. Comput. Phys., 228(5):1678– 1712, 2009.
[26] Haas J.F., Sturtevant B., “Interaction of weak shock waves with cylindrical and spherical gas in homogeneitie”, Journal of Fluid Mechanics 181:41- 76.
[27] Kleine H., Tepper S., Takehara, K., Etoh T. G., Hiraki K., “Cavitation induced by low-speed underwater impact”, Int. J. Shock Waves vol. 19, pp. 895, 2009.
[28] Niu. Y.-Y., Lin, Y.-C., Chang C.-H., “A further work on multi-phase two-fluid approach for compressible multiphase flows”, Int. J. Numer. Meth. Fluids, 58:879- 896, 2008.