طراحی و تحلیل اجکتور سیال ثانویه در سکوی شبیه‌ساز ارتفاع

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مهندسی هوافضا/ دانشگاه صنعتی امیرکبیر

2 گروه پژوهشی پیشران/پژوهشکده سامانه های حمل ونقل فضایی/ پژوهشگاه فضایی ایران، تهران/ایران

3 دانشکده مهندسی هوافضا/ دانشگاه صنعتی امیرکبیر

چکیده

غالبا" جهت تست زمینی موتورهای مورد استفاده در فضا از سکوی شبیه‌ساز ارتفاع استفاده می‌شود. این سکو  مجهز به یک دیفیوزر خروجی گاز مافوق صوت است. جریان گازهای احتراقی خروجی از موتور به طور خودکار از طریق دیفیوزر به محیط اتمسفر تخلیه شده و فشار پایین مطلوب در اطراف موتور برقرار می‌شود. در صورتی که فشار موتور از حدی پایین‌تر باشد، جریان مافوق صوت در دیفیوزر برقرار نمی‌شود. در این حالت نیاز است از اجکتور کمکی در انتهای دیفیوزر استفاده شود. در تحقیق حاضر، الگوریتم جدیدی در طراحی اجکتور مافوقصوت توسعه داده شده است. برخالف روش‌های رایج، الگوریتم مزبور قابلیت استفاده از سیال اولیه (ورودی از نازل اجکتور) و سیال ثانویه (خروجی از انتهای دیفیوزر)  مختلف را دارد. در طراحی اجکتور، پارامترهای اصلی توسط الگوریتم تعیین می‌شوند؛ در حالی که پارامترهای فرعی از نتایج تست تجربی مراجع معتبر و یا شبیه‌سازی عددی انتخاب می‌شوند. در الگوریتم طراحی، حاشیه اطمینان لازم برای کارکرد مطلوب اجکتور پیش‌بینی شده است که توسط شبیه‌سازی عددی جریان به دست می‌آید. همچنین از شبیه‌سازی عددی جریان برای تأیید روش طراحی استفاده می‌شود. در انتها با استفاده از الگوریتم ارائه شده، یک اجکتور برای کم کردن فشار استارت یک مجموعه موتور-دیفیوزر مافوق صوت، طراحی شده است. شبیه‌سازی یکپارچه دیفیوزر-اجکتور برای دو حالت موتور خاموش و موتور روشن انجام شده و مناسب بودن طراحی انجام شده برای اجکتور در هر دو حالت مورد تأیید قرار گرفته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design and Analysis of Gas Ejector in High Altitude Test Facility

نویسندگان [English]

  • Esmail Mohammadi 1
  • Nematollah Fouladi 2
  • Ali Madadi 3
1 Aerospace Engineering/ Amirkabir University of Technology
2 Space Transportation Research Institute, Iranian Space Research Center, Tehran, Iran
3 Aerospace Engineering/ Amirkabir University of Technology
چکیده [English]

Usually, ground testing of space engines is performed in a high altitude test facility. The facility is equipped with a supersonic diffuser that expels automatically engine gases to the atmospheric environment and maintains a vacuum pressure around its nozzle and motor. Normally; in the case of lower motor pressure, the supersonic flow in the diffuser could not be established. In this situation, an auxiliary ejector is employed frequently at the end section of the diffuser. In the present study, a new algorithm for designing the supersonic ejector has been proposed. Unlike conventional methods, this algorithm can be used with different primary and secondary fluids. The main design parameters are determined by the algorithm, while the secondary parameters are selected from the experimental test results of the existing references. A safe margin is considered for the safe operation of the ejector, which is predicted through the numerical simulations. Also, numerical simulation is used to verify the present design algorithm. Finally, using the proposed algorithm, an ejector is designed to reduce the minimum starting pressure of a second throat exhaust diffuser. An integrated simulation of the diffuser-ejector is performed and the appropriateness of the designed ejector is confirmed.

کلیدواژه‌ها [English]

  • High altitude test facility
  • Supersonic ejector
  • Design algorithm
  • Numerical simulation
[1]  P. Sreekireddy, T.K.K. Reddy, V. Dadi, P. Bhramara, CFD Simulation of Steam Ejector System in High Altitude Test (HAT) Facility, in:  ASME 2012 Gas Turbine India Conference, American Society of Mechanical Engineers, 2012, pp. 149-157.
[2]  D.-W. Sun, I.W. Eames, Recent developments in the design theories and application of ejectors: a review, Journal of the Institute of Energy, 68(475) (1995) 6579.
[3]  Z. Aidoun, M. Ouzzane, The effect of operating conditions on the performance of a supersonic ejector for refrigeration, International Journal of Refrigeration, 27(8) (2004) 974-984.
[4]  B. Zhou, B. Fleck, Comparison of swirling effects on ejector performance using four turbulence models, Canadian Aeronautics and Space Journal, 46(4) (2000) 178-182.
[5]  S. Balamurugan, M.D. Lad, V.G. Gaikar, A.W. Patwardhan, Hydrodynamics and mass transfer characteristics of gas–liquid ejectors, Chemical Engineering Journal, 131(1) (2007) 83-103.
[6]  Y. Zhu, Y. Li, W. Cai, Control oriented modeling of ejector in anode gas recirculation solid oxygen fuel cell systems, Energy Conversion and Management, 52(4) (2011) 1881-1889.
[7]  J.H. Keenan, An investigation of ejector design by analysis and experiment, Journal of Applied Mechanics, 17 (1950) 299.
[8]  J. Keenan, E. Neumann, A simple air ejector, ASME J. Appl. Mech, 9(2) (1942) A75-A81.
[9]  B. Huang, J. Chang, C. Wang, V. Petrenko, A 1-D analysis of ejector performance, International journal of refrigeration, 22(5) (1999) 354-364.
[10]  J.T. Munday, D.F. Bagster, A new ejector theory applied to steam jet refrigeration, Industrial & Engineering Chemistry Process Design and Development, 16(4) (1977) 442-449.
[11]  T. Sriveerakul, S. Aphornratana, K. Chunnanond, Performance prediction of steam ejector using computational fluid dynamics: Part 1. Validation of the CFD results, International Journal of Thermal Sciences, 46(8) (2007) 812-822.
[12]  K. Chunnanond, S. Aphornratana, Ejectors: applications in refrigeration technology, Renewable and Sustainable Energy Reviews, 8(2) (2004) 129-155.
[13]  G.K. Alexis, Estimation of ejector’s main cross sections in steam-ejector refrigeration system, Applied Thermal Engineering, 24(17) (2004) 2657-2663.
[14]  N. Hewedy, M.H. Hamed, F.S. Abou-Taleb, T.A. Ghonim, Optimal performance and geometry of supersonic ejector, Journal of Fluids Engineering, 130(4) (2008) 041204.
[15]  S. Aphornratana, I.W. Eames, A small capacity steam-ejector refrigerator: experimental investigation of a system using ejector with movable primary nozzle, International Journal of Refrigeration, 20(5) (1997) 352-358.
[16]  J. Munday, D. Bagster, The choking phenomena in ejector with particular reference to steam jet refrigeration, in:  Thermal Fluids Conference of Inst, of Eng. Australia, 1976, pp. 84-88.
[17]  B.J. Huang, C.B. Jiang, F.L. Hu, Ejector Performance Characteristics and Design Analysis of Jet Refrigeration System, Journal of Engineering for Gas Turbines and Power, 107(3) (1985) 792-802.
[18]  M. Hoggarth, The design and performance of highpressure injectors as gas jet boosters, Proceedings of the Institution of Mechanical Engineers, 185(1) (1970) 755-766.
[19]  G. Emanuel, Optimum performance for a singlestage gaseous ejector, AIAA Journal, 14(9) (1976) .6921-2921
[20]  W. Chen, M. Liu, D. Chong, J. Yan, A.B. Little, Y. Bartosiewicz, A 1D model to predict ejector performance at critical and sub-critical operational regimes, International journal of refrigeration, 36(6) (2013) 1750-1761.
[21]  M. Hadidoolabi, A. Yousefi, M. Hashemabadi, Hypersonic Wind Tunnel Diffusers Design Based on Numerical Analysis of Flow Field, Amirkabir J. Mech. Eng 49(3) (2017) 457-470.
[22]  N. Fouladi, A. Mohamadi, H. Rezaei, Numerical design and analysis of supersonic exhaust diffuser in altitude test simulator, Modares Mechanical Engineering, 16(8) (2016) 159-168.
[23]   A. Omidvar, M. Ghazikhani, M.R. Razavi, Simulation and parameter study of small scale variable geometry ejector using CFD, Modares Mechanical Engineering, 14(5) (2014) 129-136.
[24]  A. Omidvar, M. Ghazikhani, S.M.R. Modarres Razavi, CFD study of a variable geometry ejector using R600a to detect optimal geometry for ejector refrigeration system, Modares Mechanical Engineering, 15(5) (2015) 227-237.
[25]  J.D. Anderson, Modern compressible flow: with historical perspective, McGraw-Hill New York, 1990.
[26] G. Emanuel, Gasdynamics: theory and applications. [Textbook],  (1986).
[27]   C. Li, Y.Z. Li, Investigation of entrainment behavior and characteristics of gas–liquid ejectors based on CFD simulation, Chemical Engineering Science, 66(3) (2011) 405-416.
[28]   M. Elkady, A. Karameldin, E.-S. Negeed, R. ElBayoumy, Experimental investigation of the effect of ejector geometry on its performance, International Journal of Nuclear Desalination, 3(2) (2008) 215-229.
[29]   S. Mikhail, Mixing of Coaxial Streams inside a Closed Conduit, Journal of Mechanical Engineering Science, 2(1) (1960) 59-68.
[30]   A. Hemidi, F. Henry, S. Leclaire, J.-M. Seynhaeve, Y. Bartosiewicz, CFD analysis of a supersonic air ejector. Part I: Experimental validation of single-phase and two-phase operation, Applied Thermal Engineering, .1351-3251 )9002( )8(92
[31]   P. Chaiwongsa, S. Wongwises, Experimental study on R-134a refrigeration system using a two-phase ejector as an expansion device, Applied Thermal Engineering, 28(5) (2008) 467-477.
[32]   Y. Bartosiewicz, Z. Aidoun, P. Desevaux, Y. Mercadier, Numerical and experimental investigations on supersonic ejectors, International Journal of Heat and Fluid Flow, 26(1) (2005) 56-70.
[33]   D.K. Acharjee, P.A. Bhat, A.K. Mitra, A.N. Roy, Studies on momentum transfer in vertical liquid-jet ejector, 1975.
[34]   P. Sreekireddy, T.K.K. Reddy, V. Dadi, P. Bhramara, CFD Simulation of Steam Ejector System in High Altitude Test (HAT) Facility, (45165) (2012) 149-157.
[35]   J. Gagan, K. Smierciew, D. Butrymowicz, J. Karwacki, Comparative study of turbulence models in application to gas ejectors, International Journal of Thermal Sciences, 78 (2014) 9-15.
[36]   C. Li, Y. Li, L. Wang, Configuration dependence and optimization of the entrainment performance for gas–gas and gas–liquid ejectors, Applied Thermal Engineering, 48 (2012) 237-248.
[37]   L. Wang, J. Yan, C. Wang, X. Li, Numerical study on optimization of ejector primary nozzle geometries, International Journal of Refrigeration, 76 (2017) 219229.
[38]   T. Sriveerakul, S. Aphornratana, K. Chunnanond, Performance prediction of steam ejector using computational fluid dynamics: Part 2. Flow structure of a steam ejector influenced by operating pressures and geometries, International Journal of Thermal Sciences, 46(8) (2007) 823-833.
[39]   E. Rusly, L. Aye, W.W.S. Charters, A. Ooi, CFD analysis of ejector in a combined ejector cooling system, International Journal of Refrigeration, 28(7) (2005) 1092-1101.
[40]   K. Pianthong, W. Seehanam, M. Behnia, T. Sriveerakul, S. Aphornratana, Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique, Energy Conversion and Management, 48(9) (2007) 2556.4652
[41]   S. Varga, A.C. Oliveira, X. Ma, S.A. Omer, W. Zhang, S.B. Riffat, Experimental and numerical analysis of a variable area ratio steam ejector, International journal of refrigeration, 34(7) (2011) 1668-1675.
[42]   F. Mazzelli, A. Milazzo, Performance analysis of a supersonic ejector cycle working with R245fa, International journal of refrigeration, 49 (2015) 79-92.
[43]   M. Diaz Brito, Parametric optimization of an existing supersonic-subsonic ejector design by means of computational fluid dynamics,  (2016).
[44]   C. Lin, W. Cai, Y. Li, J. Yan, Y. Hu, K. Giridharan, Numerical investigation of geometry parameters for pressure recovery of an adjustable ejector in multievaporator refrigeration system, Applied Thermal Engineering, 61(2) (2013) 649-656.
[45]   N. Ruangtrakoon, T. Thongtip, S. Aphornratana, T. Sriveerakul, CFD simulation on the effect of primary nozzle geometries for a steam ejector in refrigeration cycle, International Journal of Thermal Sciences, 63 (2013) 133-145.
[46]   F. Kong, H. Kim, Analytical and computational studies on the performance of a two-stage ejector– diffuser system, International Journal of Heat and Mass Transfer, 85 (2015) 71-87.
[47]   K. Zhang, X. Zhu, X. Ren, Q. Qiu, S. Shen, Numerical investigation on the effect of nozzle position for design of high performance ejector, Applied Thermal Engineering, 126 (2017) 594-601.
[48]   Y. Zhu, W. Cai, C. Wen, Y. Li, Numerical investigation of geometry parameters for design of high performance ejectors, Applied Thermal Engineering, 29(5) (2009) 898-905.
[49]   A. Maghsoodi, E. Afshari, H. Ahmadikia, Optimization of geometric parameters for design a high-performance ejector in the proton exchange membrane fuel cell system using artificial neural network and genetic algorithm, Applied Thermal Engineering, 71(1) (2014) 410-418.
[50]   R. Manikanda Kumaran, T. Sundararajan, D. Raja Manohar, Simulations of high altitude tests for large area ratio rocket motors, AIAA journal, 51(2) (2012) 433-443.
[51]   R.M. Kumaran, T. Sundararajan, D.R. Manohar, D. Dason, Modeling of two-stage ejector for highaltitude testing of satellite thrusters, AIAA journal, 50(6) (2012) 1398-1408.
[52]   R. Manikanda Kumaran, K. Vivekanand, T. Sundararajan, S. Balasubramanian, D. Raja Manohar, Analysis of Diffuser and Ejector Performance in a High Altitude Test Facility, in:  45th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference & Exhibit, 2009, pp. 5008.
[53]   H.-G. Sung, S. Yoon, H. Yeom, J. Kim, Y. Kim, Y. Ko, Y. Kim, S. Oh, Study on Design-and OperationParameters of Supersonic Exhaust Diffuser, in:  46th AIAA Aerospace Sciences Meeting and Exhibit, 2008, pp. 855.
[54] R. Manikanda Kumaran, T. Sundararajan, D. Raja Manohar, Performance Evaluation of Second-Throat Diffuser for High-Altitude-Test Facility, Journal of  propulsion and power, 26(2) (2010) 248-258.