[1] P. Sreekireddy, T.K.K. Reddy, V. Dadi, P. Bhramara, CFD Simulation of Steam Ejector System in High Altitude Test (HAT) Facility, in: ASME 2012 Gas Turbine India Conference, American Society of Mechanical Engineers, 2012, pp. 149-157.
[2] D.-W. Sun, I.W. Eames, Recent developments in the design theories and application of ejectors: a review, Journal of the Institute of Energy, 68(475) (1995) 6579.
[3] Z. Aidoun, M. Ouzzane, The effect of operating conditions on the performance of a supersonic ejector for refrigeration, International Journal of Refrigeration, 27(8) (2004) 974-984.
[4] B. Zhou, B. Fleck, Comparison of swirling effects on ejector performance using four turbulence models, Canadian Aeronautics and Space Journal, 46(4) (2000) 178-182.
[5] S. Balamurugan, M.D. Lad, V.G. Gaikar, A.W. Patwardhan, Hydrodynamics and mass transfer characteristics of gas–liquid ejectors, Chemical Engineering Journal, 131(1) (2007) 83-103.
[6] Y. Zhu, Y. Li, W. Cai, Control oriented modeling of ejector in anode gas recirculation solid oxygen fuel cell systems, Energy Conversion and Management, 52(4) (2011) 1881-1889.
[7] J.H. Keenan, An investigation of ejector design by analysis and experiment, Journal of Applied Mechanics, 17 (1950) 299.
[8] J. Keenan, E. Neumann, A simple air ejector, ASME J. Appl. Mech, 9(2) (1942) A75-A81.
[9] B. Huang, J. Chang, C. Wang, V. Petrenko, A 1-D analysis of ejector performance, International journal of refrigeration, 22(5) (1999) 354-364.
[10] J.T. Munday, D.F. Bagster, A new ejector theory applied to steam jet refrigeration, Industrial & Engineering Chemistry Process Design and Development, 16(4) (1977) 442-449.
[11] T. Sriveerakul, S. Aphornratana, K. Chunnanond, Performance prediction of steam ejector using computational fluid dynamics: Part 1. Validation of the CFD results, International Journal of Thermal Sciences, 46(8) (2007) 812-822.
[12] K. Chunnanond, S. Aphornratana, Ejectors: applications in refrigeration technology, Renewable and Sustainable Energy Reviews, 8(2) (2004) 129-155.
[13] G.K. Alexis, Estimation of ejector’s main cross sections in steam-ejector refrigeration system, Applied Thermal Engineering, 24(17) (2004) 2657-2663.
[14] N. Hewedy, M.H. Hamed, F.S. Abou-Taleb, T.A. Ghonim, Optimal performance and geometry of supersonic ejector, Journal of Fluids Engineering, 130(4) (2008) 041204.
[15] S. Aphornratana, I.W. Eames, A small capacity steam-ejector refrigerator: experimental investigation of a system using ejector with movable primary nozzle, International Journal of Refrigeration, 20(5) (1997) 352-358.
[16] J. Munday, D. Bagster, The choking phenomena in ejector with particular reference to steam jet refrigeration, in: Thermal Fluids Conference of Inst, of Eng. Australia, 1976, pp. 84-88.
[17] B.J. Huang, C.B. Jiang, F.L. Hu, Ejector Performance Characteristics and Design Analysis of Jet Refrigeration System, Journal of Engineering for Gas Turbines and Power, 107(3) (1985) 792-802.
[18] M. Hoggarth, The design and performance of highpressure injectors as gas jet boosters, Proceedings of the Institution of Mechanical Engineers, 185(1) (1970) 755-766.
[19] G. Emanuel, Optimum performance for a singlestage gaseous ejector, AIAA Journal, 14(9) (1976) .6921-2921
[20] W. Chen, M. Liu, D. Chong, J. Yan, A.B. Little, Y. Bartosiewicz, A 1D model to predict ejector performance at critical and sub-critical operational regimes, International journal of refrigeration, 36(6) (2013) 1750-1761.
[21] M. Hadidoolabi, A. Yousefi, M. Hashemabadi, Hypersonic Wind Tunnel Diffusers Design Based on Numerical Analysis of Flow Field, Amirkabir J. Mech. Eng 49(3) (2017) 457-470.
[22] N. Fouladi, A. Mohamadi, H. Rezaei, Numerical design and analysis of supersonic exhaust diffuser in altitude test simulator, Modares Mechanical Engineering, 16(8) (2016) 159-168.
[23] A. Omidvar, M. Ghazikhani, M.R. Razavi, Simulation and parameter study of small scale variable geometry ejector using CFD, Modares Mechanical Engineering, 14(5) (2014) 129-136.
[24] A. Omidvar, M. Ghazikhani, S.M.R. Modarres Razavi, CFD study of a variable geometry ejector using R600a to detect optimal geometry for ejector refrigeration system, Modares Mechanical Engineering, 15(5) (2015) 227-237.
[25] J.D. Anderson, Modern compressible flow: with historical perspective, McGraw-Hill New York, 1990.
[26] G. Emanuel, Gasdynamics: theory and applications. [Textbook], (1986).
[27] C. Li, Y.Z. Li, Investigation of entrainment behavior and characteristics of gas–liquid ejectors based on CFD simulation, Chemical Engineering Science, 66(3) (2011) 405-416.
[28] M. Elkady, A. Karameldin, E.-S. Negeed, R. ElBayoumy, Experimental investigation of the effect of ejector geometry on its performance, International Journal of Nuclear Desalination, 3(2) (2008) 215-229.
[29] S. Mikhail, Mixing of Coaxial Streams inside a Closed Conduit, Journal of Mechanical Engineering Science, 2(1) (1960) 59-68.
[30] A. Hemidi, F. Henry, S. Leclaire, J.-M. Seynhaeve, Y. Bartosiewicz, CFD analysis of a supersonic air ejector. Part I: Experimental validation of single-phase and two-phase operation, Applied Thermal Engineering, .1351-3251 )9002( )8(92
[31] P. Chaiwongsa, S. Wongwises, Experimental study on R-134a refrigeration system using a two-phase ejector as an expansion device, Applied Thermal Engineering, 28(5) (2008) 467-477.
[32] Y. Bartosiewicz, Z. Aidoun, P. Desevaux, Y. Mercadier, Numerical and experimental investigations on supersonic ejectors, International Journal of Heat and Fluid Flow, 26(1) (2005) 56-70.
[33] D.K. Acharjee, P.A. Bhat, A.K. Mitra, A.N. Roy, Studies on momentum transfer in vertical liquid-jet ejector, 1975.
[34] P. Sreekireddy, T.K.K. Reddy, V. Dadi, P. Bhramara, CFD Simulation of Steam Ejector System in High Altitude Test (HAT) Facility, (45165) (2012) 149-157.
[35] J. Gagan, K. Smierciew, D. Butrymowicz, J. Karwacki, Comparative study of turbulence models in application to gas ejectors, International Journal of Thermal Sciences, 78 (2014) 9-15.
[36] C. Li, Y. Li, L. Wang, Configuration dependence and optimization of the entrainment performance for gas–gas and gas–liquid ejectors, Applied Thermal Engineering, 48 (2012) 237-248.
[37] L. Wang, J. Yan, C. Wang, X. Li, Numerical study on optimization of ejector primary nozzle geometries, International Journal of Refrigeration, 76 (2017) 219229.
[38] T. Sriveerakul, S. Aphornratana, K. Chunnanond, Performance prediction of steam ejector using computational fluid dynamics: Part 2. Flow structure of a steam ejector influenced by operating pressures and geometries, International Journal of Thermal Sciences, 46(8) (2007) 823-833.
[39] E. Rusly, L. Aye, W.W.S. Charters, A. Ooi, CFD analysis of ejector in a combined ejector cooling system, International Journal of Refrigeration, 28(7) (2005) 1092-1101.
[40] K. Pianthong, W. Seehanam, M. Behnia, T. Sriveerakul, S. Aphornratana, Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique, Energy Conversion and Management, 48(9) (2007) 2556.4652
[41] S. Varga, A.C. Oliveira, X. Ma, S.A. Omer, W. Zhang, S.B. Riffat, Experimental and numerical analysis of a variable area ratio steam ejector, International journal of refrigeration, 34(7) (2011) 1668-1675.
[42] F. Mazzelli, A. Milazzo, Performance analysis of a supersonic ejector cycle working with R245fa, International journal of refrigeration, 49 (2015) 79-92.
[43] M. Diaz Brito, Parametric optimization of an existing supersonic-subsonic ejector design by means of computational fluid dynamics, (2016).
[44] C. Lin, W. Cai, Y. Li, J. Yan, Y. Hu, K. Giridharan, Numerical investigation of geometry parameters for pressure recovery of an adjustable ejector in multievaporator refrigeration system, Applied Thermal Engineering, 61(2) (2013) 649-656.
[45] N. Ruangtrakoon, T. Thongtip, S. Aphornratana, T. Sriveerakul, CFD simulation on the effect of primary nozzle geometries for a steam ejector in refrigeration cycle, International Journal of Thermal Sciences, 63 (2013) 133-145.
[46] F. Kong, H. Kim, Analytical and computational studies on the performance of a two-stage ejector– diffuser system, International Journal of Heat and Mass Transfer, 85 (2015) 71-87.
[47] K. Zhang, X. Zhu, X. Ren, Q. Qiu, S. Shen, Numerical investigation on the effect of nozzle position for design of high performance ejector, Applied Thermal Engineering, 126 (2017) 594-601.
[48] Y. Zhu, W. Cai, C. Wen, Y. Li, Numerical investigation of geometry parameters for design of high performance ejectors, Applied Thermal Engineering, 29(5) (2009) 898-905.
[49] A. Maghsoodi, E. Afshari, H. Ahmadikia, Optimization of geometric parameters for design a high-performance ejector in the proton exchange membrane fuel cell system using artificial neural network and genetic algorithm, Applied Thermal Engineering, 71(1) (2014) 410-418.
[50] R. Manikanda Kumaran, T. Sundararajan, D. Raja Manohar, Simulations of high altitude tests for large area ratio rocket motors, AIAA journal, 51(2) (2012) 433-443.
[51] R.M. Kumaran, T. Sundararajan, D.R. Manohar, D. Dason, Modeling of two-stage ejector for highaltitude testing of satellite thrusters, AIAA journal, 50(6) (2012) 1398-1408.
[52] R. Manikanda Kumaran, K. Vivekanand, T. Sundararajan, S. Balasubramanian, D. Raja Manohar, Analysis of Diffuser and Ejector Performance in a High Altitude Test Facility, in: 45th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference & Exhibit, 2009, pp. 5008.
[53] H.-G. Sung, S. Yoon, H. Yeom, J. Kim, Y. Kim, Y. Ko, Y. Kim, S. Oh, Study on Design-and OperationParameters of Supersonic Exhaust Diffuser, in: 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008, pp. 855.
[54] R. Manikanda Kumaran, T. Sundararajan, D. Raja Manohar, Performance Evaluation of Second-Throat Diffuser for High-Altitude-Test Facility, Journal of propulsion and power, 26(2) (2010) 248-258.