بررسی ارتعاشات غیرخطی بعد از کمانش ناشی از بار حرارتی و تحلیل پایداری نانوورق گرافن دو لایه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه یاسوج، دانشکده مهندسی، گروه مهندسی مکانیک

2 دانشگاه شیراز، دانشکده مهندسی، گروه مهندسی مکانیک

چکیده

در این تحقیق رفتار ارتعاش بعد از کمانش یک نانو ورق گرافن دولایه تحت بار حرارتی بررسی شده است. بدین منظور، نانو ورق گرافن به صورت یک ورق اورتوتروپیک غیرکلاسیک مدل شده است که در آن اثر مقیاس کوچک لحاظ شده است. فرمول بندی مسئله بر اساس تئوری ورق کیرشهف انجام شده که فرضیات غیرخطی فون کارمن در روابط کرنش – جابجایی در نظر گرفته شده است و از تئوری الاستیسیته غیر محلی ایرینگن برای اعمال اثر اندازه بهره گرفته شده است. اثرات حرارتی، نیروهای واندروالس بین لایه‌ای و کایرالیتی نیز در نظر گرفته شده و خواص مواد وابسته به دما فرض شده است. به کمک روش مقیا سهای زمانی چندگانه یک پاسخ نیمه تحلیلی به دست آمده است. اثر تغییر مقیاس کوچک بر فرکانس‌های طبیعی، جابجایی و منحنی پاسخ بررسی و نتایج عددی با استفاده از مدل نانو ورق غیرمحلی استخراج شده است. نتایج عددی با نتایج تحقیقات مشابه مقایسه شده است. تأثیر پارامترهای مختلف بر ارتعاشات بعد از کمانش نانو ورق گرافن دولایه در محیط حرارتی از جمله پارامتر مقیاس، ابعاد، و بار حرارتی ارائه شده است. پایداری مودهای ارتعاشی حول یک وضعیت کمانشی بررسی شده است. نتایج نشان می‌دهد که پارامتر مقیاس و تغییر دما نقش مهمی در رفتار ارتعاش غیرخطی نانوساختارهای کمانش کرده دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nonlinear Vibration and Stability Analysis of Thermally Postbuckled Double-Layered Graphene Sheet

نویسندگان [English]

  • GholamAli Varzandian 1
  • Sima Ziaee 1
  • Mehrdad Farid 2
  • Abbas Niknejad 1
1 Department of Mechanical Engineering, Yasouj University
2 Department of Mechanical Engineering, Shiraz University
چکیده [English]

In the present research, the vibration behavior is presented for a thermally postbuckled double layered graphene sheet. For this purpose, the graphene sheet is modeled as a non-classical orthotropic plate. The formulations are based on the Kirchhoff’s plate theory, and the von Karman-type nonlinearity is considered in the strain-displacement relations. Eringen’s nonlocal elasticity theory is employed to incorporate the size effects. The thermal effects, van der Waals forces between layers and chirality are also included and the material properties are assumed to be temperature-dependent. A semi analytical solution is obtained using multiple time scales method. The effects of variation of the small scale parameter to the natural frequencies, deflections and response curve of double layered graphene sheet are analyzed and the numerical results are obtained from the nonlocal plate model. Numerical results are compared with those of similar researches. Effects of various parameters on the postbuckled vibration of graphene sheet in thermal environments such as the scale parameter, length, and thermal load are presented. The stability of vibration modes around a buckled configuration is investigated. The results show that the scale parameter and thermal changes have very important roles on the nonlinear vibrational behavior of the nano scale buckled structures.

کلیدواژه‌ها [English]

  • Double layered graphene sheet
  • Thermal postbuckling
  • Nonlocal plate model
  • Multiple time scales methods
[1]  A.R .  Setoodeh,  P. Malekzadeh,  A.R. Vosoughi, Nonlinear free vibration of orthotropic graphene sheets using nonlocal mindlin plate theory, Proc. Inst. Mech. Eng., Part C: J Mech. Eng. Sci., 226(7) (2011) 1896-1906.
[2] K.F. Wang, B.L. Wang, Effect of surface energy on the non-linear postbuckling behavior  of   nanoplates, International Journal of  Non-Linear  Mechanics,  55 (2013) 19-24.
[3]  R. Maitra, S. Bose, Post Buckling Behaviour of a
[3]  R. Maitra, S. Bose, Post Buckling Behaviour of a Nanobeam considering both the surface and nonlocal effects, International Journal of Advancements in Research & Technology, 1 (2012) 1-5.
[4]  W.T. Koiter, Couple Stresses in the Theory of Elasticity, I and II, Prac. Royal Netherlands Academy of Sciences, Series B, LXVII, 1(67) (1964) 17–44.
[5]  R.D. Mindlin, N.N. Eshel, On first strain-gradient theories in linear elasticity, Int. J. Sol. Struct., 4 (1968) 109–124.
[6]  F. Yang, A. Chong, D. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Sol.Struct., 39 (2002) 2731–2743.
[7]   A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54 (1983) 4703–4710.
[8]   A.C. Eringen, Nonlocal Continuum Field Theories, New York, 2002.
[9]  S.C. Pradhan, J.K. Phadikar, Nonlocal elasticity theory for vibration of nanoplates, J. Sound. Vib., 325 (2009) 206–223.
[10]   G.A.  Varzandian,  S.  Ziaee, Analytical  Solution of Non-Linear Free Vibration of Thin Rectangular Nano Plates  with Various  Boundary  Conditions  Based on Non-Local Theory, Amirkabir Journal of Mechanical Engineering, 48(4) (2017) 331–346 (in Persian).
[11]   N. Yamaki, M. Chiba, Nonlinear Vibrations of aClamped Rectangular Plate with Initial Deflection and Initial Edge Displacement Part I: Theory, Thin-Walled Structures, 1 (1983) 3-29.
[12]  J.K. Paik, Large deflection orthotropic plate approach to develop ultimate strength formulations for stiffened panels under combined biaxial compression/tension and lateral pressure, Thin-Walled Structures, 39 (2001) 215-246.
[13]  R. Ansari, R. Gholami, Size-dependent modeling of the free vibration characteristics of postbuckled third- order shear deformable rectangular nanoplates based on the surface stress elasticity theory, Composites Part B (at press), (2016).
[14]  Chen Liu, Liao-Liang Ke, Jie Yang, Sritawat Kitipornchai, Yue-Sheng Wang, Buckling and post- buckling analyses of size-dependent piezoelectric nanoplates, Theoretical & Applied Mechanics Letters, 6 (2016) 253-267.
[15]  Y.M. Yue, C.Q. Ru, K.Y. Xu, Modified von Kármán equations for elastic nanoplates with surface tension and surface elasticity, International Journal of Non– Linear Mechanics, 88 (2017) 67-73.
[16]  R. Gholami, R. Ansari, Y. Gholami, Size-dependent bending, buckling and vibration of higher-order shear deformable  magneto-electro-thermo-elastic rectangular nanoplates, Mater. Res. Express, (at press), (2017).
[17]  C.-L. Zhang, H.-S. Shen, Temperature-dependent elastic properties of single-walled carbon nanotubes: prediction from molecular dynamics simulation, Appl. Phys. Lett. 89 081904, (2006).
[18]  H.-S. Shen, Y.-M. Xu, C.-L. Zhang, Prediction of nonlinear vibration of bilayer graphene sheets in thermal environments via molecular dynamics simulations and nonlocal elasticity, Comput. Methods Appl. Mech. Engrg, 267 (2013) 458–470.
[19]  H.-S. Shen, X.-Q. He, D.-Q. Yang, Vibration of thermally postbuckled carbon nanotube-reinforced composite beams resting on elastic foundations, International Journal of Non-Linear Mechanics, (2017).
[20]  W. Lestari, S. Hanagud, Nonlinear vibration of buckled beams: some exact solutions, International Journal of Solids and Structures, 38 (2001) 4741— 4757.
[21]  M. Karimi, A.R. Shahidi, A general comparison the surface layer degree on the out-of phase and in-phase vibration behavior of a skew double-layer magneto– electro–thermo-elastic nanoplate, Applied Physics A, 125(106) (2019) (in press).
[22]  M. Karimi, A.R. Shahidi, Comparing magnitudes of surface energy stress in synchronous and asynchronous bending/buckling analysis of slanting double-layer METE nanoplates, Applied Physics A, 125(154) (2019) (in press).
[23]  L. C., C.T. W., Elastic moduli of multi-walled carbon nanotubes and the effect of vanderWaals forces, Composites Science and Technology, 11 (2003) 1517– 1524.
[24]   S. Kitipornchai, X.Q. He, K.M. Liew, Continuum model for the vibration of multilayered graphene sheets, Physical Review B, 72 (2005) 075443.
[25]  J. Wang, X. He, S. Kitipornchai, H. Zhang, Geometrical nonlinear free vibration of multi-layered graphene sheets, J. Phys. D: Appl. Phys, 44 (2011) 135401 (135409pp).
[26]   A. Farajpour, A. ArabSolghar, A. Shahidi, postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression, Physica E, 47 (2013) 197-206.
[27]   M.R. Barati, Magneto-hygro-thermal vibration behavior of elastically coupled nanoplate systems incorporating nonlocal and strain gradient effects, The Brazilian Society of Mechanical Sciences and Engineering, (TECHNICAL PAPER), (2017).
[28]  M. Karimi, A.R. Shahidi, S. Ziaei-Rad, Surface layer and nonlocal parameter effects on the in-phase and out-of-phase natural frequencies of a double-layer piezoelectric nanoplate under thermo-electro- mechanical loadings, Microsystem Technologies, (TECHNICAL PAPER) (2017).
[29]  E. Jomehzadeh, A.R. Saidi, A study on large amplitude vibration of multilayered graphene sheets, Computational Materials Science, 50 (2011) 1043– 1051.
[30]   S. Arghavan, A.V. Singh, Effects of van der Waals interactions on the nonlinear vibration of multi- layered graphene sheets, J. Phys. D: Appl. Phys., 45 (2012) 455305 (455308pp).
[31]   L. Shen, H. Shen, C. Zhang, Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments, Comput. Mater. Sci., 48:680 (2010).
[32]  E. Ventsel, T. Krauthammer, Thin Plates and Shells: Theory, Analysis and Applications, Marcell Dekker Inc, 2001.
[33] J.N. Reddy, Theory and Analysis of Elastic plates and Shells: 2nd Edition, Taylor & Francis Group, 2007.
[34] I.S. Raju, G.V. Rao, K.K. Raju, Effect of longitudinal or inplane deformation and inertia on the large amplitude flexural vibrations of slender beams and thin plates, Journal of Sound and Vibration, 49(3) (1976) 415-422.
[35] A.H. Nayfeh, S.A. Emam, Exact solution and stability of postbuckling configurations of beams, Nonlinear Dynamics, 54 (2008) 395–408.
[36]  K.-S. Na, J.-H. Kim, Thermal postbuckling investigations of functionally graded plates using 3-D finite element method, Finite Elements in Analysis and Design, 42 (2006) 749-756.
[37]  M. Neek-Amal, F.M. Peeters, Graphene nanoribbons subjected to axial stress, PHYSICAL REVIEW B, 82, (2010) 085432.
[38]  M. Terrones et.al, Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and Applications, nano today, 5, (2010) 351-372.
[39] Xiu-Xi Wang, Jiang Qian ,Mao-Kuang Huang, A boundary integral equation formulation for large amplitude nonlinear vibration of thin elastic plates, Computer Methods in Applied Mechanics and Engineering, 86 (1991) 73-86.
[40] S.R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, 11 (2014) 1541-1564.
[41]  M. Karimi, A.R. Shahidi, Buckling analysis of skew magneto-electro-thermo-elastic  nanoplates considering surface energy layers and utilizing the Galerkin method, Applied Physics A, (2018) 124:681.
[42] M. Karimi, A.R. Shahidi, H.R. Mirdamadi, Shear vibration and buckling of double‑layer orthotropic nanoplates based on RPT resting on elastic foundations by DQM including surface effects, Microsystem Technologies, (TECHNICAL PAPER) (2015).