[1] J.S. Duncan, Airplane Flying Handbook, FAA-H-80833A, U.S. Department of Transportation, Oklahoma, 2016.
[2] S. Majumdar, Low-Cycle Fatigue and Creep Analysis of Gas Turbine Engine Components, J. AIRCRAFT, 12(4) (1975) 376-382.
[3] T. Goswami, Creep-Fatigue Life Prediction - A Ductility Model, High Temperature Materials and Processes, 14(2) (1995) 101-114.
[4] W.Z. Zhuang, N.S. Swansson, Thermo-Mechanical Fatigue Life Prediction: A Critical Review, DSTO Aeronautical and Maritime Research Laboratory, Australia, 1998.
[5] R. Hagmeijer, A. de Boar, H.J. ten Hoeve, N.H. Huisman, J.C. Kok, G.A. Kool, M.F. Koolloos, W.P. Visser, S. Woldendrop, W.B. de Wolf, Toward Integrated Analysis of Gas Turbine Components for Life Prediction, National Aerospace Laboratory NLR, Netherlands, 2000.
[6] M.R. Reyhani, M. Alizadeh, A. Fathi, H. Khaledi, Turbine blade temperature calculation and life estimation - a sensitivity analysis, Propulsion and Power Research, .161-841 )3102( )2(2
[7] L.M. Kachanov, Introduction to continuum damage mechanics, Martinus Nijhoff Publishers, US, 1986.
[8] J.L. Chaboche, Constitutive Equations for Cyclic Plasticity and Cyclic Viscoplasticity, International Journal of Plasticity, 5 (1989) 274-302.
[9] J. Lemaitre, J.L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, Cambridge, 1998.
[10] J.L. Chaboche, F. GALLERNEAU, An overview of the damage approach of durability modelling at elevated temperature, Fatigue Fract Engng Mater Struct, 24 (2001) 405-418.
[11] T.W. Kim, D.H. Kang, J.T. Yeom, N.K. Park, Continuum damage mechanics-based creep–fatigue-interacted life prediction of nickel-based superalloy at high temperature, Scripta Materialia, 57 (2007) 1149-1152.
[12] D. Shi, X. Hu, X. Yang, J. Liu, Continuum damage mechanism-based life prediction for Ni-based superalloy under complex loadings, Materials at High Temprature, 30(4) (2013) 287-294.
[13] R.Z. Wang, X.C. Zhang, J.G. Gong, X.M. Zhu, S.T. Tu, C.C. Zhang, Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650 °C based on cycle-by-cycle concept, International Journal of Fatigue, 97(12) (2017) 114-123.
[14] J.L. Chaboche, A review of some plasticity and viscoplasticity constitutive theories, International Journal of Plasticity, 24 (2008) 1642-1693.
[15] A. AMBROZIAK, P. KŁOSOWSKI, THE ELASTOVISCOPLASTIC CHABOCHE MODEL, TASK QUARTERLY 10, 1 (2006) 49-61.
[16] J.L. Chaboche, P.M. LESN, A NON-LINEAR CONTINUOUS FATIGUE DAMAGE MODEL, Fatigue. Fract. Engng. Mater. Struct., 11(1) (1988) 1-17.
[17] F. Shen, G.Z. Voyadjis, W. Hu, Q. Meng, Analysis on the fatigue damage evolution of notched specimens with consideration of cyclic plasticity, Fatigue & Fracture of Engineering Meterial & Structure, 38 (2015) 2-14.
[18] V. Velay, G. BERNHART, D. DELAGNES, L. PENAZZI, A continuum damage model applied to high temperature fatigue lifetime prediction of a martensitic tool steel, Wiley-Blackwell, 28(11) (2005) 1009-1023.
[19] J.T. Yeom, S.J. Williams, I.S. Kim, N.K. Park, Unified Viscoplastic Models for Low Cycle Fatigue Behavior of Waspaloy, METALS AND MATERIALS International, 7(3) (2001) 233-240.
[20] J.T. Yeom, S.J. Williams, N.K. Park, Low-cycle fatigue life prediction for Waspaloy, MATERIALS AT HIGH TEMPERATURES, 19(3) (2002) 153-161.
[21] J.H. Lee, TOTAL OPERATING ACTIVITIES OF GAS TURBINE COMPONENTS - TOTAL EQUIVALENT OPERATING HOURS(TEOH), THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS, Three Park Avenue, New York, N.Y. 10016-5990, 1999.