[1] L. Vasilev, P. Grakovich, D. Khrustalev, Limiting characteristic of inclined thermosyphon and heat pipes, Inzhenerno-Fizicheskii Zhurnal, 46 (1984) 709-716.
[2] Y. Kamotani, Performance of gravity-assisted heat pipes operated at small tilt angles, Heat transfer and thermal control systems, (1978).
[3] R. Manimaran, K. Palaniradja, N. Alagumurthi, K. Velmurugan, An investigation of thermal performance of heat pipe using di-water, Science and Technology, 2(4) (2012) 77-80.
[4] Y.M. Hung, K.-K. Tio, Thermal analysis of optimally designed inclined micro heat pipes with axial solid wall conduction, International Communications in Heat and Mass Transfer, 39(8) (2012) 1146-1153.
[5] H. Tang, Y. Tang, B. Zhuang, G. Chen, S. Zhang, Experimental investigation of the thermal performance of heat pipes with double-ended heating and middle-cooling, Energy Conversion and Management, 148 (2017) 1332-1345.
[6] T. Tharayil, L.G. Asirvatham, C.F.M. Cassie, S. Wongwises, Performance of cylindrical and flattened heat pipes at various inclinations including repeatability in anti-gravity–A comparative study, Applied Thermal Engineering, 122 (2017) 685-696.
[7] M. Hu, R. Zheng, G. Pei, Y. Wang, J. Li, J. Ji, Experimental study of the effect of inclination angle on the thermal performance of heat pipe photovoltaic/thermal (PV/T) systems with wickless heat pipe and wire-meshed heat pipe, Applied Thermal Engineering, 106 (2016) 651-660.
[8] A.A. Alammar, R.K. Al-Dadah, S.M. Mahmoud, Numerical investigation of effect of fill ratio and inclination angle on a thermosiphon heat pipe thermal performance, Applied Thermal Engineering, 108 (2016) 1055-1065.
[9] M. Mehrali, E. Sadeghinezhad, R. Azizian, A.R. Akhiani, S.T. Latibari, M. Mehrali, H.S.C. Metselaar, Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe, Energy Conversion and Management, 118 (2016) 459-473.
[10] W.I. Aly, M.A. Elbalshouny, H.A. El-Hameed, M. Fatouh, Thermal performance evaluation of a helically-micro-grooved heat pipe working with water and aqueous Al2O3 nanofluid at different inclination angle and filling ratio, Applied Thermal Engineering, 110 (2017) 1294-1304.
[11] E. Sadeghinezhad, M. Mehrali, M.A. Rosen, A.R. Akhiani, S.T. Latibari, M. Mehrali, H.S.C. Metselaar, Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance, Applied Thermal Engineering, 100 (2016) 775-787.
[12] Z. Xu, Y. Zhang, B. Li, C.-C. Wang, Y. Li, The influences of the inclination angle and evaporator wettability on the heat performance of a thermosyphon by simulation and experiment, International Journal of Heat and Mass Transfer, 116 (2018) 675-684.
[13] M. Mahdavi, S. Tiari, S. De Schampheleire, S. Qiu, Experimental study of the thermal characteristics of a heat pipe, Experimental Thermal and Fluid Science, 93 (2018) 292-304.
[14] A.A. Abdulshaheed, P. Wang, G. Huang, C. Li, High performance copper-water heat pipes with nanoengineered evaporator sections, International Journal of Heat and Mass Transfer, 133 (2019) 474-486.
[15] G. Kumaresan, S. Venkatachalapathy, L.G. Asirvatham, Experimental investigation on enhancement in thermal characteristics of sintered wick heat pipe using CuO nanofluids, International Journal of Heat and Mass Transfer, 72 (2014) 507-516.
[16] T. Yousefi, S. Mousavi, B. Farahbakhsh, M. Saghir, Experimental investigation on the performance of CPU coolers: Effect of heat pipe inclination angle and the use of nanofluids, Microelectronics Reliability, 53(12) (2013) 1954-1961.
[17] H. Tang, Y. Tang, J. Li, Y. Sun, G. Liang, R. Peng, Experimental investigation of the thermal performance of heat pipe with multi-heat source and double-end cooling, Applied Thermal Engineering, 131 (2018) 159-166.