[1] Y.B. Kim, Study on the effect of humidity and stoichiometry on the water saturation of PEM fuel cells, International Journal of Energy Research, 36(4) (2012) 509-522.
[2] J.P. Owejan, T.A. Trabold, J.J. Gagliardo, D.L. Jacobson, R.N. Carter, D.S. Hussey, M. Arif, Voltage instability in a simulated fuel cell stack correlated to cathode water accumulation, Journal of Power Sources, 171(2) (2007) 626-633.
[3] S. Endoo, K. Pruksathorn, P. Piumsomboon, Identification of the key variables in membrane electrode preparation for PEM fuel cells by a factorial design, Renewable Energy, 35(4) (2010) 807-813.
[4] R. Anderson, L. Zhang, Y. Ding, M. Blanco, X. Bi, D.P. Wilkinson, A critical review of two-phase flow in gas flow channels of proton exchange membrane fuel cells, Journal of Power Sources, 195(15) (2010) 4531- 4553.
[5] R. Anderson, M. Blanco, X. Bi, D.P. Wilkinson, Anode water removal and cathode gas diffusion layer flooding in a proton exchange membrane fuel cell, International Journal of Hydrogen Energy, 37(21) (2012) 16093-16103.
[6] Z.X. Chen, D.B. Ingham, M.S. Ismail, L. Ma, K.J.Hughes, M. Pourkashanian, Dynamics of liquid water in the anode flow channels of PEM fuel cells: A numerical parametric study, Journal of the Energy Institute, (2018).
[7] M. Ashrafi, M. Shams, The effects of flow-field orientation on water management in PEM fuel cells with serpentine channels, Applied Energy, 208 (2017) 1083-1096.
[8] M. Ashrafi, H. Kanani, M. Shams, Numerical and experimental study of two-phase flow uniformity in channels of parallel PEM fuel cells with modified Z-type flow-fields, Energy, 147 (2018) 317-328.
[9] J.M. Sergi, S.G. Kandlikar, Quantification and characterization of water coverage in PEMFC gas channels using simultaneous anode and cathode visualization and image processing, International Journal of Hydrogen Energy, 36(19) (2011) 12381- 12392.
[10] J.P. Owejan, T.A. Trabold, D.L. Jacobson, M. Arif, S.G. Kandlikar, Effects of flow field and diffusion layer properties on water accumulation in a PEM fuel cell, International Journal of Hydrogen Energy, 32(17) (2007) 4489-4502.
[11] R. Banerjee, S.G. Kandlikar, Experimental investigation of two-phase flow pressure drop transients in polymer electrolyte membrane fuel cell reactant channels and their impact on the cell performance, Journal of Power Sources, 268 (2014) 194-203.
[12] S.G. Kandlikar, E.J. See, M. Koz, P. Gopalan, R. Banerjee, Two-phase flow in GDL and reactant channels of a proton exchange membrane fuel cell, International Journal of Hydrogen Energy, 39(12) (2014) 6620-6636.
[13] Z. Lu, S.G. Kandlikar, C. Rath, M. Grimm, W. Domigan, A.D. White, M. Hardbarger, J.P. Owejan, T.A. Trabold, Water management studies in PEM fuel cells, Part II: Ex situ investigation of flow maldistribution, pressure drop and two-phase flow pattern in gas channels, International Journal of Hydrogen Energy, 34(8) (2009) 3445-3456.
[14] I.S. Hussaini, C.-Y. Wang, Visualization and quantification of cathode channel flooding in PEM fuel cells, Journal of Power Sources, 187(2) (2009) 444-451.
[15] D. Spernjak, A.K. Prasad, S.G. Advani, In situ comparison of water content and dynamics in parallel, single-serpentine, and interdigitated flow fields of polymer electrolyte membrane fuel cells, Journal of Power Sources, 195(11) (2010) 3553-3568.
[16] J.M. LaManna, S. Chakraborty, J.J. Gagliardo, M.M. Mench, Isolation of transport mechanisms in PEFCs using high resolution neutron imaging, International Journal of Hydrogen Energy, 39(7) (2014) 3387-3396.
[17] S.S. Alrwashdeh, I. Manke, H. Markötter, J. Haußmann, N. Kardjilov, A. Hilger, M.J. Kermani, M. Klages, A.M. Al-Falahat, J. Scholta, J. Banhart, Neutron radiographic in operando investigation of water transport in polymer electrolyte membrane fuel cells with channel barriers, Energy Conversion and Management, 148(Supplement C) (2017) 604-610.
[18] D. Muirhead, R. Banerjee, M.G. George, N. Ge, P. Shrestha, H. Liu, J. Lee, A. Bazylak, Liquid water saturation and oxygen transport resistance in polymer electrolyte membrane fuel cell gas diffusion layers, Electrochimica Acta, 274 (2018) 250-265.
[19] R. Banerjee, N. Ge, C. Han, J. Lee, M.G. George, H. Liu, D. Muirhead, P. Shrestha, A. Bazylak, Identifying in operando changes in membrane hydration in polymer electrolyte membrane fuel cells using synchrotron X-ray radiography, International Journal of Hydrogen Energy, 43(20) (2018) 9757-9769.
[20] Z. Dunbar, R.I. Masel, Quantitative MRI study of water distribution during operation of a PEM fuel cell using Teflon flow fields, Journal of Power Sources, 171(2) (2007) 678-687.
[21] T. Suzuki, Y. Tabuchi, S. Tsushima, S. Hirai, Measurement of water content distribution in catalyst coated membranes under water permeation conditions by magnetic resonance imaging, International Journal of Hydrogen Energy, 36(9) (2011) 5479-5486.
[22] A. Bozorgnezhad, M. Shams, H. Kanani, M. Hasheminasab, G. Ahmadi, The experimental study of water management in the cathode channel of single- serpentine transparent proton exchange membrane fuel cell by direct visualization, International Journal of Hydrogen Energy, 40(6) (2015) 2808-2832.
[23] R. Banerjee, S.G. Kandlikar, Liquid water quantification in the cathode side gas channels of a proton exchange membrane fuel cell through two- phase flow visualization, Journal of Power Sources, 247 (2014) 9-19.
[24] A. Bazylak, Liquid water visualization in PEM fuel cells: A review, International Journal of Hydrogen Energy, 34(9) (2009) 3845-3857.
[25] A. Bozorgnezhad, M. Shams, H. Kanani, M. Hasheminasab, G. Ahmadi, Two-phase flow and droplet behavior in microchannels of PEM fuel cell, International Journal of Hydrogen Energy, 41(42) (2016) 1-18.
[26] K. Tüber, D. Pócza, C. Hebling, Visualization of water buildup in the cathode of a transparent PEM fuel cell, Journal of Power Sources, 124(2) (2003) 403- 414.
[27] T. Ous, C. Arcoumanis, Visualisation of water accumulation in the flow channels of PEMFC under various operating conditions, Journal of Power Sources, 187(1) (2009) 182-189.
[28] R.M. Aslam, D.B. Ingham, M.S. Ismail, K.J. Hughes, L. Ma, M. Pourkashanian, Simultaneous direct visualisation of liquid water in the cathode and anode serpentine flow channels of proton exchange membrane (PEM) fuel cells, Journal of the Energy Institute, 91(6) (2018) 1057-1070.
[29] R.M. Aslam, D.B. Ingham, M.S. Ismail, K.J. Hughes, L. Ma, M. Pourkashanian, Simultaneous thermal and visual imaging of liquid water of the PEM fuel cell flow channels, Journal of the Energy Institute, (2018).
[30] B. Wahdame, D. Candusso, X. François, F. Harel, J.-M. Kauffmann, G. Coquery, Design of experiment techniques for fuel cell characterisation and development, International Journal of Hydrogen Energy, 34(2) (2009) 967-980.
[31] H. Kanani, M. Shams, M. Hasheminasab, A. Bozorgnezhad, Model development and optimization of operating conditions to maximize PEMFC performance by response surface methodology, Energy Conversion and Management, 93 (2015) 9-22.
[32] S.-J. Wu, S.-W. Shiah, W.-L. Yu, Parametric analysis of proton exchange membrane fuel cell performance by using the Taguchi method and a neural network, Renewable Energy, 34(1) (2009) 135-144.
[33] S. Kaytakoğlu, L. Akyalçın, Optimization of parametric performance of a PEMFC, International Journal of Hydrogen Energy, 32(17) (2007) 4418- 4423.
[34] R.C. Gonzalez, R.E. Woods, Digital Image Processing (3rd Edition), Prentice-Hall, Inc., 2006.
[35] D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, 2008.