[1] X. Wang, A. Mujumdar, Heat transfer characteristics of nanofluids: a review, International journal of thermal sciences, 46(1) (2007) 1-19.
[2] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, International Journal of heat and Mass transfer, 43(19) (2000) 3701-3707.
[3] S. Choi, J. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab., IL (United States), 1995.
[4] J. Buongiorno, Convective transport in nanofluids, Journal of heat transfer, 128(3) (2006) 240-250.
[5] J. Eastman, S. Choi, S. Li, W. Yu, L. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles Applied physics letters, 78(6) (2001) 718-720.
[6] G. Polidori, S. Fohanno, C. Nguyen, A note on heat transfer modelling of Newtonian nanofluids in laminar free convection, International Journal of Thermal Sciences, 46(8) (2007) 739-744.
[7] D. Tzou, Thermal instability of nanofluids in natural convection, International Journal of Heat and Mass Transfer, 51(11-12) (2008) 2967-2979.
[8] M. Valipour, R. Masoodi, S. Rashidi, M. Bovand, M. Mirhosseini, A numerical study on convection around a square cylinder using Al2O3-H2O nanofluid, Thermal science, 18(4) (2014) 1305-1314.
[9] M. Corcione, E. Habib, A. Quintino, A two- phase numerical study of buoyancy-driven convection of alumina–water nanofluids in differentially-heated horizontal annuli, International Journal of Heat and Mass Transfer, 65 (2013) 327-338.
[10] M. Sheikholeslami, M. Gorji-Bandpy, S. Soleimani, Two phase simulation of nanofluid flow and heat transfer using heatline analysis, International Communications in Heat and Mass Transfer, 47 (2013) 73-81.
[11] M. Rashidi, A. Hosseini, I. Pop, S. Kumar, N. Freidoonimehr, Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel, Applied Mathematics and Mechanics, 35(7) (2014) 831-848.
[12] S.Y. Motlagh, H. Soltanipour, Natural convection of Al2O3-water nanofluid in an inclined cavity using Buongiorno’s two- phase model, International Journal of Thermal Sciences, 111 (2017) 310-320.
[13] N. Bondareva, M. Sheremet, I. Pop, Magnetic field effect on the unsteady natural convection in a right-angle trapezoidal cavity filled with a nanofluid: Buongiorno’s mathematical model, International Journal of Numerical Methods for Heat & Fluid Flow, 25(8) (2015) 1924-1946.
[14] I. Hashim, A. Alsabery, M. Sheremet, A. Chamkha, Numerical investigation of natural convection of Al2O3-water nanofluid in a wavy cavity with conductive inner block using Buongiorno’s two-phase model, Advanced Powder Technology, 30(2) (2019) 399-414.
[15] J. Rostami, A. Abbassi, M. Saffar-Avval, Numerical Heat Transfer by Nanofluids in a wavy walls Microchannel using Dispersion Method, Amirkabir Journal of Mechanical Engineering, (2018).(in Persian)
[16] M. Sepehrnia, H. Khorasanizadeh, R. Sadeghi, Investigation of nanofluid flow field and conjugate heat transfer in a MCHS with four different arrangements, Amirkabir Journal of Mechanical Engineering, (2017). (in Persian)
[17] Z. Haddad, H.F. Oztop, E. Abu-Nada, A. Mataoui, A review on natural convective heat transfer of nanofluids, Renewable and Sustainable Energy Reviews, 16(7) (2012) 5363-5378.
[18] C. Ho, W. Liu, Y. Chang, C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study, International Journal of Thermal Sciences, 49(8) (2010) 1345-1353.
[19] G. Sheikhzadeh, M. Dastmalchi, H. Khorasanizadeh, Effects of nanoparticles transport mechanisms on Al2O3–water nanofluid natural convection in a square enclosure, International Journal of Thermal Sciences, 66 (2013) 51-62.
[20] F. Garoosi, S. Garoosi, K. Hooman, Numerical simulation of natural convection and mixed convection of the nanofluid in a square cavity using Buongiorno model, Powder technology, 268 (2014) 279-292.
[21] A.A.A. Arani, A.A. Azemati, M. Rezaee, B.S. Hadavand, Numerical study of different conduction models for Al 2 O 3-water nanofluid with variable properties inside a trapezoidal enclosure, Journal of Mechanical Science and Technology, 31(5) (2017) 2433-2441.