[1] B.J. Briscoe, F. Motamedi, The ballistic impact characteristics of aramid fabrics: the influence of interface friction, Wear, 158(1-2) (1992) 229–247.
[2] S. Rebouillat, Tribological properties of woven paraaramid fabrics and their constituent yarns, Journal of Materials Science, 33 (1998) 3293–3301.
[3] C. Ha-Minh, F. Boussu, T Kanit, D. Crépin, A. Imad, Effect of frictions on the ballistic performance of a 3D warp interlock fabric: numerical analysis, Applied Composite Materials, 19 (2012) 333-347.
[4] X.S. Zeng, V.B.C. Tan, V.P.W. Shim, Modelling interyarn friction in woven fabric armour, International Journal for Numerical Methods in Engineering, 66(8) (2006) 1309–1330.
[5]S. R. Falahatgar, M. Oliaee, Numerical Analysis of Ballistic Behavior of Multi-layer High-strength Woven Fabrics Under High-velocity Impact and Investigation of Inter-yarn Friction Effects, Tabriz Mechanical Engineering, 49(1) (2019) 199-208. (in Persian)
[6] K.M .Kirkwood, J.E. Kirkwood, Y.S. Lee, R.G. Egres, N.J. Wagner, E.D. Wetzel, Yarn pull-out as a mechanism for dissipating ballistic impact energy in Kevlar KM-2 fabric. Part I: quasi-static characterization of yarn pullout, Textile Research Journal, 74(10) (2004) 920–928.
[7] J.E. Kirkwood, K.M. Kirkwood, Y.S. Lee, R.G. Egres, N.J. Wagner, E.D. Wetzel, Yarn pull-out as a mechanism for dissipating ballistic impact energy in Kevlar KM-2 fabric. Part II: predicting ballistic performance, Textile Research Journal, 74(11) (2004) 939–948.
[8] G. Nilakantan, E.D. Wetzel, R. Merrill, T.A. Bogetti, R. Adkinson, M. Keefe, Experimental and numerical testing of the V50 impact response of flexible fabrics: addressing the effects of fabric boundary slippage, 11th International LS-DYNA users conference, MI USA: Dearborn, June 6–8, (2010).
[9]H. Talebi, S.V. Wong, A.M.S. Hamouda, Finite element evaluation of projectile nose angle effects in ballistic perforation of high strength fabric, Composite Structures, .023-413 )9002( 78
[10] A. Khodadadi, G. H. Liaghat, M. Akbari, M. Tahmasebi, Numerical and exprimental analysis of penetration into kevlar fabrics and investigation of the effective factors on the ballistic performance, Modares Mechanical Engineering, 13(12) (2013) 124-133. (in Persian)
[11] S.A. Taghizadeh, G. H. Liaghat, A. Niknejad, E. Pedram, Experimental study on quasi-static penetration process of cylindrical indenters with different nose shapes into the hybrid composite panels, Composite Materials, 53(1) (2018) 107-123.
[12] H. Shanazari, G. H. Liaghat, H Hadavinia, A. Aboutorabi, Analytical investigation of high-velocity impact on hybrid unidirectional/woven composite panels, Journal of Thermoplastic Composite Materials, 30(4) (2017) 545-563.
[13] N. Pirmohammadi, G. H. Liaghat, M. Pol, H. Sabouri, Analytical experimental and numerical nvestigation of sandwich panels made of honeycomb core subjected projectile impact, Modares Mechanical Engineering, ( .46-351 )4102( )6(41in Persian)
[14] VBC. Tan, TW. Ching, Computational simulation of fabric armour subjected to ballistic impacts, International journal of impact engineering, 32(11) (2006) 1737-1751.
[15] M. Hedayatian, G. H. Liaghat, G. Rahimi, H. Pol, Numerical and experimental analyses projectile penetration in grid cylindrical composite structures under high velocity Impact, Modares Mechanical Engineering, ( .62-71 )4102( )9(41in Persian)
[16] H. Babaei, A. jamali, T. Mirzababaie Mostofi, S. H.Ashraf Talesh, Experimental Study and Mathematical Modeling of Deformation of Rectangular Plates under Impact Load, Journal of Solid and Fluid Mechanics, 6 (2017) 143–152.
[17] E. Mehrabani Yeganeh, G. H. Liaghat, M.H. Pol, Experimental investigation of cylindrical projectiles nose shape effects on high velocity perforation of woven polymer composite, Modares Mechanical Engineering, ( .813-903 )4102( )41(41in Persian)
[18] Y. Yang, X. Chen, Investigation of energy absorption mechanisms in a soft armor panel under ballistic impact, Textile Research Journal, 87(20) (2016) 1-12.
[19]M. Alitavoli, H. Babaei, A. Mahmoudi, A. Golbaf, T. Mirzababaie Mostofi, Experimental and Analytical Study of Effective Factors on Compaction Process of Aluminium Powder under the Impact Load by Low Speed, Modares Mechanical Engineering, 15(7) (2015) 22-30. (in Persian)
[20] H. Babaei, T. Mirzababaie Mostofi, M. Alitavoli, M. Namdari, Experimental investigation and a model presentation for predicting the behavior of metal and alumina powder compaction under impact loading, Modares Mechanical Engineering, 15(5) (2015) 357-366( in Persian)
[21] Y. Wang, X. Chen, R. Young, I. Kinloch, W. Garry, An experimental study of ply orientations on ballistic impact resistance in multiply fabric panels, Textile Research Journal, 86(1) (2016) 34-43.
[22] Y. Duan, M. Keefe, T.A. Bogetti, B.A. Cheeseman, Modeling friction effects on the ballistic impact behavior of a single-ply high-strength fabric, International Journal of Impact Engineering, 31(8) (2005) 996–1012.
[23] Y. Duan, M. Keefe, T. Bogetti, B. Powers, Finite element modeling of transverse impact on a ballistic fabric, International Journal of Mechanical Sciences, 48(1) (2006) 33-43.
[24] Y. Wang, X. Chen, R. Young, A numerical and experimental analysis of the influence of crimp on ballistic impact response of woven fabrics, Composite Structures, 140 (2016) 44–52.
[25] C.T. Lim, V.P.W. Shim, Finite-element modeling of the ballistic impact of fabric armor, International Journal of Impact Engineering, 28 (2003) 13–31.
[26] A.C.P. Koh, V.P.W. Shim, V.B.C. Tan, Dynamic behaviour of UHMWPE yarns and addressing impedance mismatch effects of specimen clamps, International Journal of Impact Engineering, 37(3) (2010) 324-332.
[27] W. Huang, Y. Wang, Y. Xia, Statistical dynamic tensile strength of UHMWPE-fibers, Polymer, 45(11) (2004)3729-3734.
[28] B. Russell, K. Karthikeyan, V. Deshpande, N. Fleck, The high strain rate response of ultra high molecularweight polyethylene: from fibre to laminate, International Journal of Impact Engineering, 60 (2013) 1-9.
[29] J.G.H. Bouwmeester, R. Marissen, O.K. Bergsma, Carbon/Dyneema Intralaminar Hybrids: new strategy to increase impact resistance or decrease mass of carbon fiber composites, In ICAS2008 Conference Anchorage, (2008) 3851-3856.
[30] A.A. Lysenko, V.A. Lysenko, O.V. Astashkina, O.I. Gladunova, Resource-conserving carbon fibre technologyies, Fibre Chemistr, 42(5) (2011) 278-286.
[31] ABAQUS User Manual. Dassault Systèmes Simulia Corp. Providence, RI, USA, (2016).
[32] S. Gogineni, X-L. Gao, N. David, J. Zheng, Ballistic impact of Twaron CT709 plain weave fabrics, Mechanics of Advanced Materials and Structures, 19(6) (2012) 441452.
[33] T.M. Mostofi, H. Babaei, M. Alitavoli, S. Hosseinzadeh, On dimensionless numbers for predicting large ductile tranverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile, Thin-Walled Structures, 112 (2017) 118-124.
[34] H. Babaei, T.M. Mostofi, M. Alitavoli, Experimental and Analytical inverstigation into large ductile transverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile, Thin-Walled Structures, 107 (2016) 257-265.
[35] D. Sun, X. Chen, M. Mrango, Investigating ballistic impact on fabric targets with gripping yarns, Fibers and Polymers, 14(7) (2013) 1184-1189.
[36]Y. Chu, S. Min, X. Chen, Numerical study of inter-yarn friction on the failure of fabrics upon ballistic impacts, Materials & Design, 115 (2017) 299-3