[1] S. Cai, Z. Suo, Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels, Journal of the Mechanics Physics of Solids, 59(11) (2011) 2259-2278.
[2] S.A. Chester, L. Anand, A thermo-mechanically coupled elastomeric materials: application to thermally responsive gels, Journal of the Mechanics Physics of Solids 59(10) (2011) 1978-2006.
[3] W. Guo, M. Li, J. Zhou, Modeling programmable deformation of self-folding allpolymer structures with temperature-sensitive hydrogels, Smart Materials Structures, 22(11) (2013) 115028.
[4] H. Mazaheri, M. Baghani, R. Naghdabadi, S. Sohrabpour, Inhomogeneous swelling behavior of temperature sensitive PNIPAM hydrogels in micro-valves: analytical and numerical study, Smart Materials Structures, 24(4) (2015) 045004.
[5] H. Mazaheri, M. Baghani, R. Naghdabadi, S. Sohrabpour, Coupling behavior of the pH/temperature sensitive hydrogels for the inhomogeneous and homogeneous swelling, Smart Materials Structures, 25(8) (2016) 085034.
[6] H. Mazaheri, M. Baghani, R. Naghdabadi, Inhomogeneous and homogeneous swelling behavior of temperature-sensitive poly-(Nisopropylacrylamide) hydrogels, Journal of Intelligent Material Systems Structures, 27(3) (2016) 324-336.
[7] T. Morimoto, F. Ashida, Temperature-responsive bending of a bilayer gel, International Journal of Solids Structures, 56 (2015) 20-28.
[8] R. Marcombe, S. Cai, W. Hong, X. Zhao, Y. Lapusta, Z. Suo, A theory of constrained swelling of a pH-sensitive hydrogel, Soft Matter, 6(4) (2010) 784-793.
[9] W. Toh, T.Y. Ng, J. Hu, Z. Liu, Mechanics of inhomogeneous large deformation of photo[1]thermal sensitive hydrogels, International Journal of Solids Structures, 51(25-26) (2014) 4440-4451.
[10] H. Li, R. Luo, Modeling the influence of initial geometry on the equilibrium responses of glucose-sensitive hydrogel, Journal of Intelligent Material Systems Structures, 22(8) (2011) 715-722.
[11] S.A. Chester, L. Anand, A coupled theory of fluid permeation and large deformations for elastomeric materials, Journal of the Mechanics Physics of Solids, 58(11) (2010) 1879-1906.
[12] M. Doi, Gel dynamics, Journal of the Physical Society of Japan, 78(5) (2009) 052001.
[13] M. Guenther, G. Gerlach, T. Wallmersperger, Non-linear effects in hydrogel-based chemical sensors: experiment and modeling, Journal of Intelligent Material Systems Structures, 20(8) (2009) 949-961.
[14] L. Ionov, Biomimetic hydrogel-based actuating systems, Advanced Functional Materials, 23(36) (2013) 4555-4570.
[15] A. Richter, Hydrogels for actuators, in: Hydrogel sensors and actuators, Springer, Berlin, Heidelberg, 2009, pp. 221-248.
[16 J.P. Chávez, A. Voigt, J. Schreiter, U. Marschner, S. Siegmund, A. Richter, A new self-excited chemo-fluidic oscillator based on stimuli-responsive hydrogels: mathematical modeling and dynamic behavior, Applied Mathematical Modelling, 40(23-24) (2016) 9719-9738.
[17] A.S. Hoffman, Hydrogels for biomedical applications, Advanced drug delivery reviews, 64 (2012) 18-23.
[18] M. Sharabi, D. Varssano, R. Eliasy, Y. Benayahu, D. Benayahu, R. Haj-Ali, Mechanical flexure behavior of bio-inspired collagen-reinforced thin composites, Composite Structures, 153 (2016) 392-400.
[19] X. Zeng, C. Li, D. Zhu, H.J. Cho, H. Jiang, Tunable microlens arrays actuated by various thermo-responsive hydrogel structures, Journal of Micromechanics Microengineering, 20(11) (2010) 115035.
[20] J. Guan, H. He, D.J. Hansford, L.J. Lee, Self-folding of three-dimensional hydrogel microstructures, The Journal of Physical Chemistry B, 109(49) (2005) 23134-23137.
[21] M. Baghani, R. Naghdabadi, J. Arghavani, coupled theory for fluid permeation in elastomeric, A large deformation framework for shape memory polymers: Constitutive modeling and finite element implementation, journal of intelligent Material systems structures 24(1) (2013) 21-32.
[22] A. Nassiri-monfared, M. Baghani, M.R. Zakerzadeh, P. Fahimi, Developing a semianalytical model for thermomechanical response of SMA laminated beams, considering SMA asymmetric behavior, Meccanica, 53(4- 5) (2018) 957-971.
[23] Z. Hu, X. Zhang, Y. Li, Synthesis and application of modulated polymer gels, Science, 1995.
[24] J. Abdolahi, M. Baghani, N. Arbabi, H. Mazaheri, Analytical and numerical analysis of swelling-induced large bending of thermallyactivated hydrogel bilayers, International Journal of Solids Structures, 99 (2016) 1-11.
[25] J. Abdolahi, M. Baghani, N. Arbabi, H. Mazaheri, Finite bending of a temperaturesensitive hydrogel tri-layer: An analytical and finite element analysis, Composite Structures ,164 (2017) 219-228.
[26] M. Guvendiren, J.A. Burdick, S. Yang, Kinetic study of swelling-induced surface pattern formation and ordering in hydrogel films with depth-wise crosslinking gradient, Soft Matter, 6(9) (2010) 2044-2049.
[27] M. Guvendiren, J.A. Burdick, S. Yang, Solvent induced transition from wrinkles to creases in thin film gels with depth-wise crosslinking gradients, Soft Matter, 6(22) (2010) 5795- 5801.
[28] M. Guvendiren, S. Yang, J.A. Burdick, Swelling-induced surface patterns in hydrogels with gradient crosslinking density, Advanced Functional Materials, 19(19) (2009) 3038- 3045.
[29] Z. Wu, N. Bouklas, R. Huang, Swell-induced surface instability of hydrogel layers with material properties varying in thickness direction, International Journal of Solids Structures, 50(3-4) (2013) 578-587.
[30] Z. Wu, N. Bouklas, Y. Liu, R. Huang, Onset of swell-induced surface instability of hydrogel layers with depth-wise graded material properties, Mechanics of Materials, 105 (2017) 138-147.
[31] Z. Wu, R. Huang, Analytical solution of swellinduced surface instability for graded hydrogel layers, in: ICF13.
[32] S. Roccabianca, M. Gei, D. Bigoni, Plane strain bifurcations of elastic layered structures subject to finite bending: theory versus experiments, IMA journal of applied mathematics, 75(4) (2010) 525-548.
[33] F. Afroze, E. Nies, H. Berghmans, Phase transitions in the system poly (N-isopropylacrylamide)/water and swelling behaviour of the corresponding networks, Journal of Molecular Structure, 554(1) (2000) 55-68.
[34] J. Kierzenka, L.F. Shampine, A BVP solver that controls residual and error, Journal of Numerical Analysis, Industrial and Applied Mathematics, 3(1-2) (2008) 27-41.