[1] L. Workman, P. Moore, Nondestructive Testing Handbook: Vol: 10, Overview, ASNT, Columbus, OH, (2012).
[2] R.K. Stanley, P.O. Moore, Nondestructive Testing Handbook V. 9: Special Nondestructive Testing Methods, ASNT, 1995.
[3] D. McCann, M. Forde, Review of NDT methods in the assessment of concrete and masonry structures, Ndt & E International, 34(2) (2001) 71-84.
[4] B. Szymanik, P. Frankowski, T. Chady, C. John Chelliah, Detection and inspection of steel bars in reinforced concrete structures using active infrared thermography with microwave excitation and eddy current sensors, Sensors, 16(2) (2016) 234.
[5] ASTM C803, Penetration resistance of hardened concrete, American Society for Testing and Materials, (1998).
[6] ASTM C900, Standard test method for pullout strenght of hardened concrete, American Society for Testing and Materials, (1998).
[7] H. Hilsdorf, J. Kropp, Performance criteria for concrete durability, CRC Press, 1995.
[8] ACI 228.2R-98, Non-destructive test methods for evaluation of concrete in structures, American Concrete Institute (1998).
[9] ASTM C597, Standard test method for pulse velocity through concrete, American Society for Testing and Materials, (1998).
[10] ASTM C1383, Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates using the Impact-Echo Method,, American Society for Testing and Materials, 4 (1998).
[11] P.J.M. Monteiro, C.Y. Pichot, K. Belkebir, Computed tomography of reinforced concrete. In: Materials Science of Concrete, Chapter 12,, American Ceramics Society, (1998).
[12] P.J. Monteiro, F. Morrison, W. Frangos, Non-destructive measurement of corrosion state of reinforcing steel in concrete, Materials Journal, 95(6) (1998) 704-709.
[13] S.K.U. Rehman, Z. Ibrahim, S.A. Memon, M. Jameel, Nondestructive test methods for concrete bridges: A review, Construction and Building Materials, 107 (2016) .68-85
[14] ASTM C876, Standard test method for half cell potentials of uncoated reinforced steel in concrete, American Society for Testing and Materials, 4 (1998).
[15] Z. Sbartaï, S. Laurens, J. Rhazi, J. Balayssac, G.Arliguie, Using radar direct wave for concrete condition assessment: Correlation with electrical resistivity, Journal of applied geophysics, 62(4) (2007) 361-374.
[16] V. Barrile, R. Pucinotti, Application of radar technology to reinforced concrete structures: a case study, NDT & e International, 38(7) (2005) 596-604.
[17] C. Maierhofer, S. Leipold, Radar investigation of masonry structures, NDT & E International, 34(2) (2001) 139-147.
[18] M. Shaw, S. Millard, T. Molyneaux, M. Taylor, J. Bungey, Location of steel reinforcement in concrete using ground penetrating radar and neural networks, Ndt & E International, 38(3) (2005) 203-212.
[19] H. Hamasaki, T. Uomoto, M. Ohtsu, H. Ikenaga, H. Tanano, K. Kishi, A. Yoshimura, Identification of reinforced in concrete by electro-magnetic methods, in: DGZfP Proceedings BB85-CD: International Symposium Non-Destructive Testing in Civil Engeneering, 2003.
[20] P.J. Shull, Nondestructive evaluation: theory, techniques, and applications, CRC press, 2002.
[21] J. García-Martín, J. Gómez-Gil, E. Vázquez-Sánchez, Non-destructive techniques based on eddy current testing, Sensors, 11(3) (2011) 2525-2565.
[22] G. Rubinacci, A. Tamburrino, S. Ventre, Concrete rebars inspection by eddy current testing, International Journal of Applied Electromagnetics and Mechanics, 25(1-4) (2007) 333-339.
[23] N. De Alcantara, Identification of steel bars immersed in reinforced concrete based on experimental results of eddy current testing and artificial neural network analysis, Nondestructive Testing and Evaluation, 28(1) (2013) 58-71.
[24] C. Kohl, M. Krause, C. Maierhofer, K. Mayer, J.Wöstmann, H. Wiggenhauser, 3D-visualisation of NDT data using a data fusion technique, Insight-NonDestructive Testing and Condition Monitoring, 45(12) (2003) 800-804.
[25] P. Gaydecki, I. Silva, B. Fernandes, Z. Yu, A portable inductive scanning system for imaging steel-reinforcing bars embedded within concrete, Sensors and Actuators A: Physical, 84(1-2) (2000) 25-32.
[26] V. Pudov, Electromagnetic devices for assessment of the state of reinforcement elements in reinforced-concrete structures, Russian Journal of Nondestructive Testing, 42(6) (2006) 369-377.
[27] S. Quek, P. Gaydecki, B. Fernandes, G. Miller, Multiple layer separation and visualisation of inductively scanned images of reinforcing bars in concrete using a polynomialbased separation algorithm, NDT & E International, 35(4) (2002) 233-240.
[28] C.J. Lammi, D.A. Lados, Effects of residual stresses on fatigue crack growth behavior of structural materials:Analytical corrections, International Journal of Fatigue, 33(7) (2011) 858-867.
[29] H. Schoenekess, W. Ricken, J.-G. Liu, W.-J. Becker, Special constructed and optimised eddy-current sensors for measuring force and strain in steel reinforced concrete, Sensors and Actuators A: Physical, 106(1-3) (2003) 159-163.
[30] M. Zaid, P. Gaydecki, S. Quek, G. Miller, B. Fernandes, Extracting dimensional information from steel reinforcing bars in concrete using neural networks trained on data from an inductive sensor, NDT & E International, 37(7) (2004) 551-558.
[31] N. de Alcantara, F. da Silva, M. Guimarães, M. Pereira, Corrosion assessment of steel bars used in reinforced concrete structures by means of eddy current testing, Sensors, 16(1) (2016) 15.
[32] M.N. Sadiku, Numerical techniques in electromagnetics, CRC press, 2000.