[1] M.F. Ashby, T. Evans, N.A. Fleck, J. Hutchinson, H. Wadley, L. Gibson, Metal foams: a design guide, Elsevier, 2000.
[2] S. Guruprasad, A. Mukherjee, Layered sacrificial claddings under blast loading Part I—analytical studies, International Journal of Impact Engineering, 24(9) (2000) 957-973.
[3] S. Guruprasad, A. Mukherjee, Layered sacrificial claddings under blast loading Part II—experimental studies, International Journal of Impact Engineering, 24(9) (2000) 975-984.
[4] A. Hanssen, L. Enstock, M. Langseth, Close-range blast loading of aluminium foam panels, International Journal of Impact Engineering, 27(6) (2002) 593-618.
[5] G. Ma, Z. Ye, Energy absorption of double-layer foam cladding for blast alleviation, International Journal of Impact Engineering, 34(2) (2007) 329-347.
[6] Y.A. Bahei-El-Din, G.J. Dvorak, O.J. Fredricksen, A blast-tolerant sandwich plate design with a polyurea interlayer, International Journal of Solids and Structures, 43(25-26) (2006) 7644-7658.
[7] G. Nurick, G. Langdon, Y. Chi, N. Jacob, Behaviour of sandwich panels subjected to intense air blast–Part 1: Experiments, Composite Structures, 91(4) (2009) 433.144
[8] D. Karagiozova, G. Nurick, G. Langdon, Behaviour of sandwich panels subject to intense air blasts–Part 2: Numerical simulation, Composite Structures, 91(4) (2009) 442-450.
[9] M. Theobald, G. Langdon, G. Nurick, S. Pillay, A.Heyns, R. Merrett, Large inelastic response of unbonded metallic foam and honeycomb core sandwich panels to blast loading, Composite structures, 92(10) (2010) 24652475.
[10] D. Karagiozova, G. Nurick, G. Langdon, S.C.K. Yuen, Y. Chi, S. Bartle, Response of flexible sandwichtype panels to blast loading, Composites Science and Technology, 69(6) (2009) 754-763.
[11] J. Shen, G. Lu, Z. Wang, L. Zhao, Experiments on curved sandwich panels under blast loading, International Journal of Impact Engineering, 37(9) (2010) 960-970.
[12] M. Hassan, Z. Guan, W. Cantwell, G. Langdon, G. Nurick, The influence of core density on the blast resistance of foam-based sandwich structures, International Journal of Impact Engineering, 50 (2012) 9-16.
[13] M. Yazici, J. Wright, D. Bertin, A. Shukla, Experimental and numerical study of foam filled corrugated core steel sandwich structures subjected to blast loading, Composite structures, 110 (2014) 98-109.
[14] C. Uday, C.S.T. Varma, B.N.K. Varma, M. Ramya, K. Padmanabhan, The influence of rigid foam density on the flexural properties of glass fabric/epoxy-polyurethane foam sandwich composites, International Journal of ChemTech Research, 6(6) (2014) 3314-3317.
[15] M. Doğru, İ. Güzelbey, Investigation of the impact effects of thermoplastic polyurethane reinforced with multi-walled carbon nanotube for soldier boot under the blast load, Journal of Thermoplastic Composite Materials, (2018) 0892705717734599.
[16] P. Zhang, Y. Cheng, J. Liu, Y. Li, C. Zhang, H. Hou, C. Wang, Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading, Composites Part B: Engineering, 105 (2016) 67-81.
[17] J.P. Dear, E. Rolfe, M. Kelly, H. Arora, P.A. Hooper, Blast performance of composite sandwich structures, Procedia engineering, 173 (2017) 471-478.
[18] A. International, Standard Test Method for Compressive Properties of Rigid Plastics, ASTM International, 2010.
[19] T. AUTODYN, Theory Manual Revision 4.3, Concord, CA: Century Dynamics, in, Inc, 2003.
[20] Z. Zhu, B. Mohanty, H. Xie, Numerical investigation of blasting-induced crack initiation and propagation in rocks, International Journal of Rock Mechanics and Mining Sciences, 44(3) (2007) 412-424.
[21] B. Dobratz, LLNL explosives handbook: properties of chemical explosives and explosives and explosive simulants, Lawrence Livermore National Lab., CA (USA), 1981.
[22] S. Yang, C. Qi, D. Wang, R. Gao, H. Hu, J. Shu, A comparative study of ballistic resistance of sandwich panels with aluminum foam and auxetic honeycomb cores, Advances in Mechanical Engineering, 5 (2013) .612985
[23] B. Luccioni, F. Isla, R. Codina, D. Ambrosini, R.Zerbino, G. Giaccio, M. Torrijos, Experimental and numerical analysis of blast response of High Strength Fiber Reinforced Concrete slabs, Engineering Structures, 175 (2018) 113-122.
[24] P. Tan, Ballistic protection performance of curved armor systems with or without debondings/delaminations, Materials & Design, 64 (2014) 25-34.
[25] D. Steinberg, Equation of state and strength properties of selected materials, (1996).
[26] G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engineering fracture mechanics, 21(1) (1985) 31-48.
[27] A. Sharma, R. Mishra, S. Jain, S.S. Padhee, P.K. Agnihotri, Deformation behavior of single and multilayered materials under impact loading, Thin-Walled Structures, 126 (2018) 193-204.
[28] T. Mabrouki, J.-F. Rigal, A contribution to a qualitative understanding of thermo-mechanical effects during chip formation in hard turning, Journal of Materials Processing Technology, 176(1-3) (2006) 214-221.