[1] N. Viliani, S. Khalili, H. Porrostami, Buckling analysis of FG plate with smart sensor/actuator, (2009).
[2] P. Phung-Van, L.B. Nguyen, L.V. Tran, T.D. Dinh, C.H. Thai, S. Bordas, M. Abdel-Wahab, H. Nguyen-Xuan, An efficient computational approach for control of nonlinear transient responses of smart piezoelectric composite plates, International Journal of Non-Linear Mechanics, 76 (2015) 190-202.
[3] X. Liang, Z. Wang, L. Wang, G. Liu, Semi-analytical solution for three-dimensional transient response of functionally graded annular plate on a two parameter viscoelastic foundation, Journal of Sound and Vibration, 333(12) (2014) 2649-2663.
[4] E. CRAWLEY, D. Luis, Use of piezoelectric actuators as elements of intelligent structures, AIAA journal, 25(10 (1987) 1373-1385.
[5] E.F. Crawley, K.B. Lazarus, Induced strain actuation of isotropic and anisotropic plates, AIAA journal, 29(6) (1991) 944-951.
[6] Y. Yu, R. Xia, Study on finite element analysis and shape control of composite laminate containing piezoelectric actuator/sensor, Acta Mater. Compos. Sinica, 14(2) (1997) 114-119.
[7] A.A. Jafari, A.A. Jandaghian, O. Rahmani, Transient bending analysis of a functionally graded circular plate with integrated surface piezoelectric layers, International Journal of Mechanical and Materials Engineering, 1(9) (2014) 1-14.
[8] A.A. Jandaghian, O. Rahmani, Size-dependent free vibration analysis of functionally graded piezoelectric plate subjected to thermo-electro-mechanical loading, Journal of Intelligent Material Systems and Structures, (2017) 1045389X17704920.
[9] S. Narayanan, V. Balamurugan, Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators, Journal of sound and vibration, 262(3) (2003) 529-562.
[10] J.M.S. Moita, I.F. Correia, C.M.M. Soares, C.A.M. Soares, Active control of adaptive laminated structures with bonded piezoelectric sensors and actuators, Computers & Structures, 82(17-19) (2004) 1349-1358.
[11] C. Hong, Transient responses of magnetostrictive plates by using the GDQ method, European Journal of Mechanics-A/Solids, 29(6) (2010) 1015-1021.
[12] C.-C. Hong, Transient Response of Functionally Graded Material Circular Cylindrical Shells with Magnetostrictive Layer, Journal of Mechanics, 32(4) (2016) 473-478.
[13] X.-L. Huang, H.-S. Shen, Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments, Journal of Sound and Vibration, 289(1-2) (2006) 25-53.
[14] J. Reddy, C. Wang, S. Kitipornchai, Axisymmetric bending of functionally graded circular and annular plates, European Journal of Mechanics-A/Solids, 18(2) (1999) 185-199.
[15] R. Javaheri, M. Eslami, Thermal buckling of functionally graded plates, AIAA journal, 40(1) (2002) 162-184.
[16] R. Javaheri, M. Eslami, Thermal buckling of functionally graded plates based on higher order theory, Journal of thermal stresses, 25(7) (2002) 603-625.
[17] H. Mozafari, A. Ayob, Effect of thickness variation on the mechanical buckling load in plates made of functionally graded materials, Procedia Technology, 1 (2012) 496-504.
[18] S. Sahraee, A. Saidi, Axisymmetric bending analysis of thick functionally graded circular plates using fourth[1]order shear deformation theory, European Journal of Mechanics-A/Solids, 28(5) (2009) 974-984.
[19] E.F. Crawley, J. De Luis, Use of piezoelectric actuators as elements of intelligent structures, AIAA journal, 25(10) (1987) 1373-1385.
[20] R. Bellman, J. Casti, Differential quadrature and long-term integration, Journal of Mathematical Analysis and Applications, 34(2) (1971) 235-238.
[21] S. Kosari, M. Erfanianb, Using Chebyshev polynomials zeros as point grid for numerical solution of linear and nonlinear PDEs by differential quadrature-based radial basis functions.
[22] X. Wang, Differential quadrature for buckling analysis of laminated plates, Computers & structures, 57(4) (1995) 715-719.
[23] M. Mohammadimehr, M. Emdadi, H. Afshari, B. Rousta Navi, Bending, buckling and vibration analyses of MSGT microcomposite circular-annular sandwich plate under hydro-thermo-magneto-mechanical loadings using DQM, International Journal of Smart and Nano Materials, 9(4) (2018) 233-260.
[24] K.-M. Liew, Y. Xiang, S. Kitipornchai, C. Wang, Vibration of Mindlin plates: programming the p-version Ritz method, Elsevier, 1998.
[25] R. Aghababaei, J. Reddy, Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates, Journal of Sound and Vibration, 326(1-2) (2009) 277-289.