[1] T. Davis, D. Healy, A. Bubeck, R. Walker, Stress concentrations around voids in three dimensions: The roots of failure, Journal of Structural Geology, 102 (2017) 193-207.
[2] D. Norris, Voids in nickel irradiated with electrons after previous argon ion bombardment, Nature, 227(5260) (1970) 830.
[3] D. Norris, Voids in irradiated metals (Part I), Radiation Effects, 14(1-2) (1972) 1-37.
[4] D. Norris, Voids in irradiated metals (Part II), Radiation Effects, 15(1-2) (1972) 1-22.
[5] J.L. Katz, H. Wiedersich, Nucleation of voids in materials supersaturated with vacancies and interstitials, The Journal of Chemical Physics, 55(3) (1971) 1414-1425.
[6] K. Russell, Thermodynamics of gas-containing voids in metals, Acta Metallurgica, 20(7) (1972) 899-907.
[7] R. Mayer, L. Brown, Nucleation and growth of voids by radiation: II. Differential equations, Journal of Nuclear Materials, 95(1-2) (1980) 58-63.
[8] M. Imada, Void Lattice formation-spinodal decomposition of vacancies, Journal of the Physical Society of Japan, 45(5) (1978) 1443- 1448.
[9] K. Krishan, Void ordering in metals during irradiation, Philosophical Magazine A, 45(3) (1982) 401-417.
[10] A. Semenov, C. Woo, Void lattice formation as a nonequilibrium phase transition, Physical Review B, , 74(2) (2006) 024108.
[11] A. Brailsford, L. Mansur, Time dependent rate theory for diffusional defect processes, Acta Metallurgica, 33(8) (1985) 1425-1437.
[12] N. Doan, G. Martin, Elimination of irradiation point defects in crystalline solids: sink strengths, Physical Review B, 67(13) (2003) 134107.
[13] W.J. Boettinger, J.A. Warren, C. Beckermann,A. Karma, Phase-field simulation of solidification, Annual review of materials research, 32(1) (2002) 163-194.
[14] H. Henry, H. Levine, Dynamic instabilities of fracture under biaxial strain using a phase field model, Physical review letters, 93(10) (2004) 105504.
[15] Y.U. Wang, Computer modeling and simulation of solid-state sintering: A phase field approach, Acta materialia, 54(4) (2006) 953-961.
[16] N. Moelans, B. Blanpain, P. Wollants, Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems, Physical Review B, 78(2) (2008) 024113.
[17] V.I. Levitas, M. Javanbakht, Advanced phase-field approach to dislocation evolution, Physical Review B, 86(14) (2012) 140101.
[18] V.I. Levitas, M. Javanbakht, Interaction between phase transformations and dislocations at the nanoscale. Part ١. General phase field approach, Journal of the Mechanics and Physics of Solids, 82(2015)287-319.
[19] M. Javanbakht, V.I. Levitas, Interaction between phase transformations and dislocations at the nanoscale. Part ٢: Phase field simulation examples, Journal of the Mechanics and Physics of Solids, 82 (2015) 164-185.
[20] M. Javanbakht, V. Levitas, Phase Field Method to the Interaction of Phase Transformations and Dislocations at Nanoscale, AUT Journal of Mechanical Engineering, 1(2) (2017) 243-246.
[21] H.-C. Yu, W. Lu, Dynamics of the self-assembly of nanovoids and nanobubbles in solids, Acta Materialia, 53(6) (2005) 1799-1807.
[22] S. Hu, C.H. Henager Jr, Phase-field modeling of void lattice formation under irradiation, Journal of Nuclear Materials, 394(2-3) (2009) 155-159..
[23] S.Y. Hu, C. Henager Jr, Phase-field simulation of void migration in a temperature gradient, Acta materialia, 58(9) (2010) 3230-3237.
[24] S. Rokkam, A. El-Azab, P. Millett, D. Wolf, Phase field modeling of void nucleation and growth in irradiated metals, Modelling and simulation in materials science and engineering, 17(6) (2009) 064002.
[25] P.C. Millett, A. El-Azab, S. Rokkam, M. Tonks, D. Wolf, Phase-field simulation of irradiated metals: Part I: Void kinetics, Computational materials science, 50(3) (2011) 949-959.
[26] P.C. Millett, A. El-Azab, D. Wolf, Phase- field simulation of irradiated metals: Part II:Gas bubble kinetics, Computational Materials Science, 50(3) (2011) 960-970.
[27] P.C. Millett, M. Tonks, Application of phase-field modeling to irradiation effects in materials, Current Opinion in Solid State and Materials Science, 15(3) (2011) 125-133.
[28] Y. Li, S. Hu, X. Sun, F. Gao, C.H. Henager Jr, M. Khaleel, Phase-field modeling of void migration and growth kinetics in materials under irradiation and temperature field, Journal of Nuclear Materials, 407(2) (2010) 119-125..
[29] Z. Xiao, A. Semenov, C. Woo, S. Shi, Single void dynamics in phase field modeling, Journal of nuclear materials, 439(1-3) (2013) 25-32.
[30] A. Semenov, C. Woo, Interfacial energy in phase-field emulation of void nucleation and growth, Journal of nuclear materials, 411(1-3) (2011) 144-149.
[31] A. Semenov, C. Woo, Phase-field modeling of void formation and growth under irradiation, Acta Materialia, 60(17) (2012) 6112-6119.
[32] Y. Li, S. Hu, R. Montgomery, F. Gao, X. Sun, Phase-field simulations of intragranular fission gas bubble evolution in UO٢ under post-irradiation thermal annealing, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 303 (2013) 62-67.
[33] I.W. Vance, P.C. Millett, Phase-field simulations of pore migration and morphology change in thermal gradients, Journal of Nuclear Materials, 490 (2017) 299-304.
[34] Y. Gao, Y. Zhang, D. Schwen, C. Jiang, C. Sun, J. Gan, X.-M. Bai, Theoretical prediction and atomic kinetic Monte Carlo simulations of void superlattice self-organization under irradiation, Scientific reports, 8(1).(2018) 6629.
[35] W. Wang, C.-l. Yi, K.-q. Fan, Molecular dynamics study on temperature and strain rate dependences of mechanical tensile properties of ultrathin nickel nanowires, Trans. Nonferrous Met. Soc. China, 23(3353) (2013) 3361.
[36] ] Y. Gong, B. Grabowski, A. Glensk, F. Körmann, J. Neugebauer, R.C. Reed, Temperature dependence of the Gibbs energy of vacancy formation of fcc Ni, Physical Review B, 97(21) (2018) 214106.
[37] D. Schwen, L.K. Aagesen, J.W. Peterson, M.R. Tonks, Rapid multiphase-field model development using a modular free energy based approach with automatic differentiation in MOOSE/MARMOT, Computational Materials Science, 132 (2017) 36-45.
[38] M. Shaikh, K. Ehrlich, Swelling in nickel-carbon and nickel-silicon alloys, Pakistan Inst. of Nuclear Science and Technology, 1990.