Experimental Investigation on the Inter-Laminar Strength in a Hybrid Elastomer Modified Fiber Metal Laminate Under High and Low-Velocity Impact and QuasiStatic Bendin

Document Type : Research Article

Authors

1 Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran

2 Post. Doc. Researcher,Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

Growing the need to impact resistive structures, hybrid laminates have been absorbed much attention. To reach appropriate strength, high stiffness, and good energy absorption, the interfacial adhesion between different layers is important. The present paper is an attempt to assess the adhesion between different layers in a hybrid laminate consists of natural rubber, glass/epoxy composite and two layers of aluminum under high and low-velocity impact and quasi-static three-point bending conditions. In order to minimize the debonding, three kinds of specimens were made by three different adhesives including Chemosil 222 and its primer, Bylamet S2 and Cyanoacrylate. Based on the results obtained from high and low-velocity impact tests, the best choice for elastomer/composite, composite/aluminum and elastomer/aluminum interfaces are bylamet S2, cyanoacrylate, and chemosil, respectively according to delaminated area. Samples containing bylamet S2 adhesive in all interfaces have a better performance in terms of dynamic stiffness.

Keywords

Main Subjects


[1] D. Mohotti, T. Ngo, S.N. Raman, M. Ali, P. Mendis, Plastic deformation of polyurea coated composite aluminium plates subjected to low velocity impact, Materials & Design (1980-2015), 56 (2014) 696-713.
[2]H.U. Zaman, M.A. Khan, R.A. Khan, Comparative   experimental studies  of   phosphate  glass  fiber/polypropylene and phosphate glass fiber/natural rubber composites, Journal of Elastomers & Plastics, 44(6) (2012) 499-514.
[3] N.A. Patil, S.S. Mulik, K.S. Wangikar, A.P. Kulkarni, Characterization of Glass Laminate Aluminium Reinforced Epoxy-A Review, Procedia Manufacturing,20(2018)554-562 .
[4]   E. Sarlin, M. Apostol, M. Lindroos, V.T. Kuokkala, J.Vuorinen, T. Lepistö, M. Vippola, Impact properties of novel corrosion resistant hybrid structures, Composite Structures, 108 (2014) 886-893.
[5]  L. Xue, W. Mock, T. Belytschko, Penetration of DH-36 steel plates with and without polyurea coating, Mechanics of Materials, 42(11) (2010) 981-1003.
[6] D.-W. Lee, B.-J. Park, S.-Y. Park, C.-H. Choi, J.-I. Song, Fabrication of high-stiffness fiber-metal laminates and study of their behavior under low-velocity impact loadings, Composite Structures, 189 (2018) 61-69.
[7] H. Mahfuz, Y. Zhu, A. Haque, A. Abutalib, U. Vaidya, S. Jeelani, B. Gama, J. Gillespie, B. Fink, Investigation of high-velocity impact on integral armor using finite element method, International journal of impact engineering, 24(2) (2000) 203-217.
[8] M.S. HooFatt, C. Lin, D.M. Revilock, D.A. Hopkins, Ballistic impact of GLARE™fiber–metal laminates, Composite Structures, 61(1) (2003) 73-88.
[9] H. Ahmadi, H. Sabouri, G. Liaghat, E. Bidkhori, Experimental and numerical investigation on the high velocity impact response of GLARE with different thickness ratio, Procedia Engineering, 10 (2011) 869874.
[10] M. Sadighi, R.C. Alderliesten, R. Benedictus, Impact resistance of fiber-metal laminates: A review, International Journal of Impact Engineering, 49 (2012) 77-90.
[11]  F. Morinière, R. Alderliesten, R. Benedictus, Modelling of impact damage and dynamics in fibre-metal laminates–a review, International Journal of Impact Engineering, 67 (2014) 27-38.
[12]  F. Moriniere, R. Alderliesten, R. Benedictus, Lowvelocity impact energy partition in GLARE, Mechanics of Materials, 66 (2013) 59-68.
[13] S.H. Khan, A.P. Sharma, R. Kitey, V. Parameswaran, Effect of metal layer placement on the damage and energy absorption mechanisms in aluminium/glass fibre laminates, International Journal of Impact Engineering, 119 (2018) 14-25
[14]  R. Das, A. Chanda, J. Brechou, A .Banerjee, Impact behaviour of fibre–metal laminates, in: Dynamic Deformation, Damage and Fracture in Composite Materials and Structures, Elsevier, 2016, pp. 491-542.
[15]  G.B. Chai, P. Manikandan, Low velocity impact response of fibre-metal laminates –A review, Composite Structures, 107 (2014) 363-381.
[16]  D. Mohotti, T. Ngo, S.N. Raman, P. Mendis, Analytical and numerical investigation of polyurea layered aluminium plates subjected to high velocity projectile impact, Materials & Design, 82 (2015) 1-17.
[17]  D. Mohotti, T. Ngo, P. Mendis, S.N. Raman, Polyurea coated composite aluminium plates subjected to high velocity projectile impact, Materials & Design (19802015), 52 (2013) 1-16.
[18]  C. Roland, D. Fragiadakis, R. Gamache, Elastomer– steel laminate armor, Composite structures, 92(5) (2010) 1059-1064.
[19]  M.A. Zarezadeh, Taherzadeh-Fard, G. Liaghat, H. Ahmadi, A. Khodadadi, Experimental study on the plies adhesion of a novel hybrid laminate composed of aluminum, glass-epoxy composite and natural rubber layers under low velocity impact, in: The 6th International Conference on Composites: Characterization, Fabrication and Application (CCFA-6) ,Iran University of Science & Technology, Tehran, Iran, 2018.
[20]  J. Krollmann, T. Schreyer, M. Veidt, K. Drechsler, Impact and post-impact properties of hybrid-matrix laminates based on carbon fiber-reinforced epoxy and elastomer subjected to low-velocity impacts, Composite Structures, 208 (2019) 535-545.
[21] D. Düring, L. Weiß, D. Stefaniak, N. Jordan, C. Hühne,Low-velocity impact response of composite laminates with steel and elastomer protective layer, Composite Structures, 134 (2015) 18-26.
[22]  A. Taherzadeh-Fard, M.A. Zarezadeh, G. Liaghat, H. Ahmadi, A. Khodadadi, Investigation on the debonding between different layers in a hybrid aluminum/glassepoxy/rubber laminate under high velocity impact in: The 6th International Conference on Composites: Characterization, Fabrication and Application (CCFA-6) Iran University of Science & Technology, Tehran, Iran, 2018.
[23]  J. Sang ,S. Aisawa, K. Miura, H. Hirahara, O. Jan, P. Jozef, M. Pavol, Adhesion of carbon steel and natural rubber by functionalized silane coupling agents, International Journal of Adhesion and Adhesives, 72 (2017) 70-74.
[24]  A. Souid, A. Sarda, R. Deterre, E .Leroy, Influence of reversion on adhesion in the rubber-to-metal vulcanization-bonding process, Polymer Testing, 41 (2015) 157-162.
[25] S. Abotula, V. Chalivendra, An experimental and numerical investigation of the static and dynamic constitutive behaviour of aluminium alloys, The Journal of Strain Analysis for Engineering Design, 45(8) (2010) 555-565.
[26] A. Khodadadi, G. Liaghat, H. Ahmadi, A.R. Bahramian, Y. Anani, O. Razmkhah, S. Asemeni, Numerical and experimental study of impact on hyperelastic rubber panels, Iranian Polymer Journal, 28(2) (2019) 113-122.