[1] E. Bakker, M. Qattan, L. Mutti, C. Demonacos, M. Krstic-Demonacos, The role of microenvironment and immunity in drug response in leukemia, Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1863(3) (2016) 414-426.
[2] B. Paul, I.D. Nesbitt, Anaemia and blood transfusion, Surgery (Oxford), 31(2) (2013) 59-66.
[3] I. Rădulescu, D. Candea, A. Halanay, Optimal control analysis of a leukemia model under imatinib treatment, Mathematics and computers in Simulation, 121 (2016) 1-11.
[4] J.-L. Cheng, S.-F. Han, Y.-Q. Li, Y.-P. Chu, Y.-M. Sun, J.-F. Guo, An experimental study on RBC count and serum potassium concentration changes during compression transfusion of WBC-removal whole blood, Chinese Nursing Research, 2(2-3) (2015) 89-92.
[5] A. Ashkin, Atomic-beam deflection by resonance-radiation pressure, Physical Review Letters, 25(19) (1970) 1321.
[6] A. Ashkin, Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime, Biophysical journal, 61(2) (1992) 569-582.
[7] T. Imasaka, Y. Kawabata, T. Kaneta, Y. Ishidzu, Optical chromatography, Analytical Chemistry, 67(11) (1995) 1763-1765.
[8] A. Hirai, H. Monjushiro, H. Watarai, Laser photophoresis of a single droplet in oil in water emulsions, Langmuir, 12(23) (1996) 5570-5575.
[9] M. Zabetian, M.S. Saidi, M.B. Shafii, M.H. Saidi, Separation of microparticles suspended in a minichannel using laser radiation pressure, Applied Optics, 52(20) (2013) 4950-4958.
[10] H. Monjushiro, Y. Tanahashi, H. Watarai, Laser-photophoretic migration and fractionation of human blood cells, Analytica chimica acta, 777 (2013) 86-90.
[11] H. Monjushiro, A. Hirai, H. Watarai, Size dependence of laser-photophoretic efficiency of polystyrene microparticles in water, Langmuir, 16(22) (2000) 8539-8542.
[12] H. Monjushiro, K. Takeuchi, H. Watarai, Anomalous laser photophoretic behavior of photo-absorbing organic droplets in water, Chemistry letters, 31(8) (2002) 788-789.
[13] H. Monjushiro, M. Tanaka, H. Watarai, Periodic expansion-contraction motion of photoabsorbing organic droplets during laser photophoretic migration in water, Chemistry letters, 32(3) (2003) 254-255.
[14] S. Takatani, M.D. Graham, Theoretical analysis of diffuse reflectance from a two-layer tissue model, IEEE Transactions on Biomedical Engineering, (12) (1979) 656-664.
[15] M.P. Hughes, Strategies for dielectrophoretic separation in laboratory‐on‐a‐chip systems, Electrophoresis, 23(16) (2002) 2569-2582.
[16] B. Çetin, D. Li, Dielectrophoresis in microfluidics technology, Electrophoresis, 32(18) (2011) 2410-2427.
[17] M.S. Pommer, Y. Zhang, N. Keerthi, D. Chen, J.A. Thomson, C.D. Meinhart, H.T. Soh, Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels, Electrophoresis, 29(6) (2008) 1213-1218.
[18] K.-H. Han, A.B. Frazier, Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium, Lab on a Chip, 8(7) (2008) 1079-1086.
[19] S. Park, Y. Zhang, T.-H. Wang, S. Yang, Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity, Lab on a Chip, 11(17) (2011) 2893-2900.
[20] S. Dash, S. Mohanty, S. Pradhan, B. Mishra, CFD design of a microfluidic device for continuous dielectrophoretic separation of charged gold nanoparticles, Journal of the Taiwan Institute of Chemical Engineers, 58 (2016) 39-48.
[21] T. Braschler, N. Demierre, E. Nascimento, T. Silva, A.G. Oliva, P. Renaud, Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies, Lab on a Chip, 8(2) (2008) 280-286.
[22] B. Mathew, A. Alazzam, M. Abutayeh, A. Gawanmeh, S. Khashan, Modeling the trajectory of microparticles subjected to dielectrophoresis in a microfluidic device for field flow fractionation, Chemical Engineering Science, 138 (2015) 266-280.
[23] N. Piacentini, G. Mernier, R. Tornay, P. Renaud, Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation, Biomicrofluidics, 5(3) (2011) 034122.
[24] S. Patel, D. Showers, P. Vedantam, T.-R. Tzeng, S. Qian, X. Xuan, Microfluidic separation of live and dead yeast cells using reservoir-based dielectrophoresis, Biomicrofluidics, 6(3) (2012) 034102.
[25] A. Kale, S. Patel, X. Xuan, Three-Dimensional Reservoir-Based Dielectrophoresis (rDEP) for Enhanced Particle Enrichment, Micromachines, 9(3) (2018) 123.
[26] J. Kadaksham, P. Singh, N. Aubry, Manipulation of particles using dielectrophoresis, Mechanics Research Communications, 33(1) (2006) 108-122.
[27] H. Bruus, Theoretical microfluidics, Oxford university press Oxford, 2008.
[28] Y.-S. Choi, K.-W. Seo, S.-J. Lee, Lateral and cross-lateral focusing of spherical particles in a square microchannel, Lab on a Chip, 11(3) (2011) 460-465.
[29] E. Evans, Y.-C. Fung, Improved measurements of the erythrocyte geometry, Microvascular research, 4(4) (1972) 335-347.
[30] P. Gascoyne, J. Satayavivad, M. Ruchirawat, Microfluidic approaches to malaria detection, Acta tropica, 89(3) (2004) 357-369.
[31] V. Nerguizian, A. Alazzam, D. Roman, I. Stiharu, M. Burnier Jr, Analytical solutions and validation of electric field and dielectrophoretic force in a bio‐microfluidic channel, Electrophoresis, 33(3) (2012) 426-435.
[32] J. Cottet, A. Kehren, S. Lasli, H. van Lintel, F. Buret, M. Frénéa‐Robin, P. Renaud, Dielectrophoresis‐assisted creation of cell aggregates under flow conditions using planar electrodes, Electrophoresis, (2019).
[33] K. Tatsumi, K. Kawano, H. Okui, H. Shintani, K. Nakabe, Analysis and measurement of dielectrophoretic manipulation of particles and lymphocytes using rail-type electrodes, Medical engineering & physics, 38(1) (2016) 24-32.
[34] M. Egger, E. Donath, Electrorotation measurements of diamide-induced platelet activation changes, Biophysical journal, 68(1) (1995) 364-372.