[1] H. Park, K. Kim, Consolidation behavior of SiC powder under cold compaction, Materials Science and Engineering: A, (1)(2001)116-124.
[2] C. Lu, Determination of cap model parameters using numerical optimization method for powder compaction, PhD Thesis, Marquette University, 2010.
[3] C. Shang, Modelling powder compaction and breakage of compacts, PhD Thesis, University of Leicester, 2012.
[4] H. Kashani Zadeh, Finite element analysis and experimental study of metal powder compaction, PhD Thesis, Queen’s University, 2010.
[5] W. Wang, Numerical modeling of compaction of particulate systems, MSc Thesis, State University System of Florida, 1999.
[6] K. Kim, S. Choi, H. Park, Densification behavior of ceramic powder under cold compaction, Transactions-American Society of Mechanical engineers Journal of Engineering Materials and Technology, 122(2) (2000) 238-244.
[7] D.H. Zeuch, J. Grazier, J. Argüello, K.G. Ewsuk, Mechanical properties and shear failure surfaces for two alumina powders in triaxial compression, Journal of materials science, 36(12) (2001) 2911-2924.
[8] R. Henderson, B. Moriarty, Finite element modelling of decompression after isostatic pressing, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 216(2) (2002) 215224.
[9] Y. Foo, Y. Sheng, B. Briscoe, An experimental and numerical study of the compaction of alumina agglomerates, International journal of solids and structures, 41(21) (2004) 59295943.
[10] G.S. Wagle, Die compaction simulation: Simplifying the application of a complex constitutive model using numerical and physical experiments, PhD Thesis, The Pennsylvania State University, 2006.
[11] P. Carlone, G. Palazzo, Computational modeling of the cold compaction of ceramic powders, International Applied Mechanics, 42(10) (2006) 1195-1201.
[12] I. Sinka, J. Cunningham, A. Zavaliangos, The effect of wall friction in the compaction of pharmaceutical tablets with curved faces: a validation study of the Drucker–Prager Cap model, Powder Technology, 133(1-3)(2003)33-43.
[13] L. Han, J. Elliott, A. Bentham, A. Mills, G.Amidon, B. Hancock, A modified DruckerPrager Cap model for die compaction simulation of pharmaceutical powders,International Journal of Solids and Structures,45(10)(2008)3088-3106.
[14] M. Zhou, S. Huang, J. Hu, Y. Lei, Y. Xiao,B. Li, S. Yan, F. Zou, A density-dependent modified Drucker-Prager Cap model for die compaction of Ag57. 6-Cu22. 4-Sn10-In10 mixed metal powders, Powder Technology, 305 (2017) 183-196.
[15] J. Almanstötter, A modified Drucker–Prager Cap model for finite element simulation of doped tungsten powder compaction, International Journal of Refractory Metals and Hard Materials, 50 (2015) 290-297.
[16] ABAQUS 6-14 documentation, in, Dassault Systemes, 2014.
[17] ASTM, Designation: D 3967 – 08, Standard test method for splitting tensile strength of intact rock core specimens, ASTM Internat., 2008.
[18] J. Cunningham, I. Sinka, A. Zavaliangos, Analysis of tablet compaction. I.Characterization of mechanical behavior of powder and powder/tooling friction, Journal of pharmaceutical sciences, 93(8) (2004) 20222039.
[19] O. Coube, H. Riedel, Numerical simulation of metal powder die compaction with special consideration of cracking, Powder Metallurgy, 43(2) (2000) 123-131.
[20] Y.B. Kim, J.S. Lee, S.M. Lee, H.J. Park, G.A. Lee, Calibration of a Density-dependent Modified Drucker-Prager Cap model for AZO powder, in: Advanced Materials Research, Trans Tech Publ, 2012, pp. 1249-1256.
[21] M. Zhou, S. Huang, W. Liu, Y. Lei, S. Yan, Experiment Analysis and Modelling of Compaction Behaviour of Ag60Cu30Sn10 Mixed Metal Powders, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, pp. 1-7.
[22] H. Diarra, V. Mazel, A. Boillon, L. Rehault, V. Busignies, S. Bureau, P. Tchoreloff, Finite Element Method (FEM) modeling of the powder compaction of cosmetic products: Comparison between simulated and experimental results, Powder technology, 224 (2012) 233-240.
[23] A. Procopio, A. Zavaliangos, J. Cunningham, Analysis of the diametrical compression test and the applicability to plastically deforming materials, Journal of Materials Science, 38(17) (2003) 3629-3639.
[24] H. Shin, J.-B. Kim, S.-J. Kim, K.Y. Rhee, A simulation-based determination of cap parameters of the modified Drucker– Prager cap model by considering specimen barreling during conventional triaxial testing, Computational Materials Science, 100 (2015) 31-38.
[25] C. Wu, B.C. Hancock, J.A. Elliott, S.M. Best, A.C. Bentham, W. Bonfield, Finite Element Analysis of Capping Mechanisms during Pharmaceutical Powder Compaction, Advances in Powder Metallurgy and Particulate Materials, 1 (2005) 62-73.
[26] B. Zhang, M. Jain, C. Zhao, M. Bruhis, R. Lawcock, K. Ly, Experimental calibration of density-dependent modified Drucker-Prager/ Cap model using an instrumented cubic die for powder compact, Powder Technology, 204(1) (2010) 27-41.
[27] C. Shang, I. Sinka, J. Pan, Constitutive model calibration for powder compaction using instrumented die testing, 52(7) (2012) 903916.
[28] K. LaMarche, D. Buckley, R. Hartley, F. Qian, S. Badawy, Assessing materials’ tablet compaction properties using the Drucker– Prager Cap model, Powder Technology, 267 (2014) 208-220.
[29] S. Garner, J. Strong, A. Zavaliangos, The extrapolation of the Drucker–Prager/Cap material parameters to low and high relative densities, Powder Technology, 283 (2015) .622-012
[30] L. Argani, D. Misseroni, A. Piccolroaz, Z. Vinco, D. Capuani, D. Bigoni, Plasticallydriven variation of elastic stiffness in green bodies during powder compaction: Part I. Experiments and elastoplastic coupling, Journal of the European Ceramic Society, 36(9) (2016) 2159-2167.
[31] I.s. Aydin, B.J. Briscoe, K.Y. Şanlitürk, The internal form of compacted ceramic components: a comparison of a finite element modelling with experiment, Powder Technology, 89(3) (1996) 239-254.
[32] C. Melo, A. Moraes, F. Rocco, F. Montilha, R. Canto, A validation procedure for numerical models of ceramic powder pressing, Journal of the European Ceramic Society, 38(8) (2018) 2928-2936.
[33] M. Zhou, S. Huang, Y. Lei, J. Hu, S. Yan, F. Zou, Investigation on compaction behaviors of Ag35Cu32Zn33 mixed metal powders under cold die compaction, Journal of Advanced Mechanical Design, Systems, and Manufacturing, 12(2) (2018) JAMDSM0037JAMDSM0037.
[34] A. Baroutaji, S. Lenihan, K. Bryan, Combination of finite element method and Drucker-Prager Cap material model for simulation of pharmaceutical tableting process, Materialwissenschaft und Werkstofftechnik,48(11)(2017)1133-1145.