[1]X.W. Wu, R.S. Chandel, H.P. Seow, H. Li, Wide gap brazing of stainless steel to nickel-based superalloy, Journal of Materials Processing Technology, 113(1) (2001) 215-221.
[2] L.S.K. Heikinheimo, A. Laukkanen, J. Veivo, Joint Characterisation for Repair Brazing of Superalloys, Welding in the World, 49(5) (2005) 5-12.
[3] Y.H. Kim, S.I. Kwun, Microstructure and Mechanical Properties of the Wide-Gap Region Brazed with Various Powder Mixing Ratios of Additive to Filler Metal Powders, Solid State Phenomena, 118 (2006) 479-484.
[4] S. Schoonbaert, X. Huang, S. Yandt, P. Au, Brazing and Wide Gap Repair of X-40 Using Ni-Base Alloys, Journal of Engineering for Gas Turbines and Power, 130(3) (2008) 032101.
[5] C.Y. Su, W.C. Lih, C.P. Chou, H.C. Tsai, Activated diffusion brazed repair for IN738 hot section components of gas turbines, Journal of Materials Processing Technology, 115(3) (2001) 326-332.
[6] C.Y. Su, W.J. Chang, M.H. Liu, C.P. Chou, Effect of mechanical properties using different filler metals on wide-clearance activated-diffusion-brazed Ni-based superalloy, Journal of Materials Engineering and Performance, 9(6) (2000) 663-668.
[7] T. Henhoeffer, X. Huang, S. Yandt, D.Y. Seo, P. Au, Microstructure and high temperature tensile properties of narrow gap braze joint between X-40 and IN738, Materials Science and Technology, 25(7) (2009) 840850.
[8] Y.H. Yu, M.O. Lai, Effects of gap filler and brazing temperature on fracture and fatigue of wide-gap brazed joints, Journal of Materials Science, 30(8) (1995) 21012107.
[9] Y. Ye, J. Wei, G. Zou, W. Long, H. Bai, A. Wu, L. Liu, Microstructure of diffusion-brazing repaired IN738LC superalloy with uneven surface defect gap width, Science and Technology of Welding and Joining, 22(7) (2017) 617-626.
[10]L.O. Osoba, O.A. Ojo, Influence of Solid-State Diffusion during Equilibration on Microstructure and Fatigue Life of Superalloy Wide-Gap Brazements, Metallurgical and Materials Transactions A, 44(9) (2013) 4020-4024.
[11]C. Hawk, S. Liu, S. Kottilingam, Effect of processing parameters on the microstructure and mechanical properties of wide-gap braze repairs on nickel-superalloy René 108, Welding in the World, 61(2) (2017) 391-404.
[12] S.D. Nelson, S. Liu, S. Kottilingam, J.C. Madeni, Spreading and solidification behavior of nickel wide-gap brazes, Welding in the World, 58(4) (2014) 593-600.
[13] A. Lal, R.G. Iacocca, R.M. German, Microstructural evolution during the supersolidus liquid phase sintering of nickel-based prealloyed powder mixtures, Journal of Materials Science, 35(18) (2000) 4507-4518.
[14] S.F. Corbin, D.C. Murray, A. Bouthillier, Analysis of Diffusional Solidification in a Wide-Gap Brazing Powder Mixture Using Differential Scanning Calorimetry, Metallurgical and Materials Transactions A, 47(12) (2016) 6339-6352.
[15] A.V. Shulga, Boron and carbon behavior in the cast Ni-base superalloy EP962, Journal of Alloys and Compounds, 436(1) (2007) 155-160.
[16] X. Wu, R.S. Chandel, H. Li, Evaluation of transient liquid phase bonding between nickel-based superalloys, Journal of Materials Science, 36(6) (2001) 1539-1546.
[17] R.K. Shiue, S.K. Wu, C.M. Hung, Infrared repair brazing of 403 stainless steel with a nickel-based braze alloy, Metallurgical and Materials Transactions A, 33(6) (2002) 1765-1773.
[18] Y. Ye, G. Zou, W. Long, H. Bai, A. Wu, L. Liu, Y. Zhou, TLP repaired IN738LC superalloy with uneven surface defect gap width after post heat treatment:Microstructure and mechanical properties, Journal of Alloys and Compounds, 748 (2018) 26-35.
[19] M. Pouranvari, A. Ekrami, A.H. Kokabi, Transient liquid phase bonding of wrought IN718 nickel based superalloy using standard heat treatment cycles: Microstructure and mechanical properties, Materials & Design, 50 (2013) 694-701.
[20] M. Pouranvari, diffusion brazing of a nickel based superalloy part4: effect of bonding temperature, Metalurgija-MJoM, 17(4) (2011) 165-173.
[21] M. Khakian, microstructural evolution during the transient liquid-phase bonding of dissimilar nickel-based superalloys of in738LC and nimonic 75, Materiali in tehnologije, 50(3) (2016) 365-371.
[22] I.S.M. SPAJANJEM, Isothermal solidification during transient liquid-phase bonding of GTD-111/Ni-Si-B/GTD-111, Materiali in tehnologije, 48(1) (2014) 113-.811
[23] B. Jahnke, J. Demny, Microstructural investigations of a nickel-based repair coating processed by liquid phase diffusion sintering, Thin Solid Films, 110(3) (1983) 225235.
[24] X. Chen, X. Qin, Z. Zhu, K. Gao, Microstructural evolution and wear properties of the continual local induction cladding NiCrBSi coatings, Journal of Materials Processing Technology, 262 (2018) 257-268.
[25] H.S. Yun, J.S. Park, S.U. An, J.M. Kim, Effect of heat treatment on the microstructural characteristics of IN738 turbine blade, in: Materials Science Forum, Trans Tech Publ, (2011), pp. 405-408.