A Developed Geometry for Endplate for Uniform Contact Pressure Distribution on the Polymer Exchange Membrane Fuel Cells Active Area

Document Type : Research Article

Authors

1 Fuel cell Technology Research laboratory, Malek Ashtar University of Technology

2 Azad Islampic University, Jouybar Branch

3 Malek Ashtar University of Technology

Abstract

The contact resistance between polymer exchange membrane fuel cell components    has a crucial effect on cell performance. The geometry of the endplate, on the other hand, plays an essential role in the contact pressure distribution on the membrane electrode assembly and the amount of contact resistance between plates. In this paper, the effect of endplate geometry on the contact pressure distribution over the membrane electrode assembly is simulated using ABAQUS software. In the next part, a new geometry for the endplate is provided and compared to flat endplates. Geometrical parameters of an endplate with curvature (bomb-shaped endplate) are considered, and the effects of these parameters on the contact pressure distribution over the membrane electrode assembly are investigated. In this simulation, a 3D model of the fuel cell is developed. Our simulation results show good performances for the designed endplate and uniform contact pressure distribution on the fuel cell active area. Finally, a single fuel cell was manufactured and assembled using the simulation parameters, and experimental tests are conducted using pressure films to verify the design.

Keywords

Main Subjects


[1]  W.K. Lee, C.H. Ho, J. Van Zee, M. Murthy, The effects of compression and gas diffusion layers on  the performance of a PEM fuel cell, Journal of Power Sources, 84(1) (1999) 45-51.
[2]  J. Ge, A. Higier, H. Liu, Effect of gas diffusion layer compression on PEM fuel cell performance, Journal of Power Sources, 159(2) (2006) 922-927.
[3]  W. Chang, J. Hwang, F. Weng, S. Chan, Effect of clamping pressure on the performance of a PEM fuel cell, Journal of Power Sources, 166(1) (2007) 149-154.
[4]  X.Q. Xing, K.W. Lum, H.J. Poh, Y.L. Wu, Optimization of assembly clamping pressure on performance of proton-exchange membrane fuel cells, Journal of Power Sources, 195(1) (2010) 62-68.
[5]  S.D. Yim, B.J. Kim, Y.J. Sohn, Y.G. Yoon, G.G. Park, W.Y. Lee, C.S. Kim, Y.C. Kim, The influence of stack clamping pressure on the performance of PEM fuel cell stack, Current Applied Physics, 10(2) (2010) S59-S61.
[6]  X. Lai, L. Peng, J. Ni, A mechanical–electrical finite element method model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells, Journal of Power Sources, 182(1) (2008) 153-159.
[7]  S.J. Lee, C.D. Hsu, C.H. Huang, Analyses of the fuel cell stack assembly pressure, Journal of Power Sources, 145(2) (2005) 353-361.
[8]  A. Bates, S. Mukherjee, S. Hwang, S.C. Lee, O. Kwon, G.H. Choi, S. Park, Simulation and experimental analysis of the clamping pressure distribution in a PEM fuel cell stack, International Journal of Hydrogen Energy, 38(15) (2013) 6481-6493.
[9]  X. Lai, J. Ni, L. Peng, S. Lan, Z. Lin, Robust design of assembly parameters on membrane electrode assembly pressure distribution, Journal of Power Sources, 172(2) (2007) 760-767.
[10]X. Wang, Y. Song, B.  Zhang,  Experimental  study on clamping pressure distribution in PEM fuel cells, Journal of Power Sources, 179(1) (2008) 305-309.
[11]S. Asghari, M. Shahsamandi, M.A. Khorasani, Design and manufacturing of end plates of a 5 kW PEM fuel cell, International Journal of Hydrogen Energy, 35(17) (2010) 9291-9297.
[12] H.N. Yu, S.S. Kim, J. Do Suh, Composite endplates with pre-curvature for PEMFC (polymer electrolyte membrane fuel cell), Composite Structures, 92(6) (2010) 1498-1503.
[13] R. Montanini, G. Squadrito, G. Giacoppo, Measurement of the clamping pressure distribution in polymer electrolyte fuel cells using piezoresistive sensor arrays and digital image correlation techniques, Journal of Power Sources, 196(20) (2011) 8484-8493.
[14]  C. Carral, P. Mele, A numerical analysis of PEMFC stack assembly through a 3D finite element model, International Journal of Hydrogen Energy, 39(9) (2014) 4516-4530.
[15]  P. Zhou, P. Lin, C. Wu, Z. Li, Effect of nonuniformity of the contact pressure distribution on the electrical contact resistance in proton exchange membrane fuel cells, International Journal of Hydrogen Energy, 36(10) (2011) 6039-6044.
[16]  E. Alizadeh, M. Barzegari, M. Momenifar, M. Ghadimi, S. Saadat, Investigation of contact pressure distribution over the active area of PEM fuel cell stack, International Journal of Hydrogen Energy, 41(4) (2016) 3062-3071.
[17]  B. Liu, M. Wei, G. Ma, W. Zhang, C. Wu, Stepwise optimization of endplate of fuel cell stack assembled by steel belts, International Journal of Hydrogen Energy, 41(4) (2016) 2911-2918.
[18]  M. Habibnia, M. Shakeri, S. Nourouzi, Determination of the effective parameters on the fuel cell efficiency, based on sealing behavior of the system, International Journal of Hydrogen Energy, 41(40) (2016) 18147- 18156.
[19] E. Alizadeh, M. Ghadimi, M. Barzegari, M. Momenifar, S. Saadat, Development of contact pressure distribution of PEM fuel cell's MEA using novel clamping mechanism, Energy, 131 (2017) 92-97.