[1] M.J. Kazemzadeh-Parsi and F. Daneshmand, Solution of geometric inverse heat conduction problems by smoothed fixed grid finite element method, Finite Elements in Analysis and Design, 45 (2009) 599-611.
[2] M.J. Kazemzadeh-Parsi and F. Daneshmand, Three dimensional smoothed fixed grid finite element method for the solution of unconfined seepage problems, Finite Elements in Analysis and Design, 64 (2013) 24-35.
[3] M.J. Kazemzadeh-Parsi, Optimal shape design for heat conduction using smoothed fixed grid finite element method and modified firefly algorithm, Iranian Journal of Science and Technology, 39(M2) (2015) 367-387.
[4] H. Samet, Application of Spatial Data Structure, Addison-Wesley, NewYork, 1990.
[5] N. Provatas, N. Goldenfeld, J. Dantzig, Adaptive mesh refinement computation of solidification microstructures using dynamic data structures, Journal of Computational Physics 148(1) (1999) 265-290.
[6] P.D. Stolfo, A. Schroder, N. Zander, S. Kollmannsberger, An easytreatmentofhangingnodesin hp-finiteelements, Finite Elements in Analysis and Design, 121 (2016) 101-117.
[7] A. Tabarraei, N. Sukumar, Adaptive computations on conforming quadtree meshes, Finite Elements in Analysis and Design, 41 (2005) 686-702.
[8] S. Natarajan, E.T. Ooi, C. Song, Finite element computations over quadtree meshes: strain smoothing and semi-analytical formulation, International Journal of Advances in Engineering Sciences and Applied Mathematics, 7(3) (2015) 124-133.
[9] T.P. Fries, A. Byfut, A. Alizada, K.W. Cheng, A. Schroder, Hanging nodes and XFEM, International Journal for Numerical Methods in Engineering, 86 (2011) 404-430.
[10] M.J. Kazemzadeh-Parsi and F. Daneshmand, Finite element method: A practical course, Islamic Azad University Press, Shiraz Branch, Shiraz, 2011, (In Persian).
[11] N.H. Asmar, Partial differential equations with Fourier series and boundary value problems, Pearson Prentice Hall, New Jersey, 2005.