[1] E. Ventsel, T. Krauthammer, Thin Plates and Shells: Theory: Analysis, and Applications, CRC Press, 2001.
[2] H.S. Tzou, R.V. Howard, A Piezothermoelastic Thin Shell Theory Applied to Active Structures, Journal of Vibration and Acoustics, 116(3) (1994) 295-302.
[3] H. Tzou, Y. Bao, A theory on anisotropic piezothermoelastic shell laminates with sensor/actuator applications, Journal of Sound and Vibration, 184(3) (1995) 453-473.
[4] S. Kapuria, P. Dumir, S. Sengupta, Exact piezothermoelastic axisymmetric solution of a finite transversely isotropic cylindrical shell, Computers & structures, 61(6) (1996) 1085-1099.
[5] A. Benjeddou, Advances in piezoelectric finite element modeling of adaptive structural elements: a survey, Computers & Structures, 76(1-3) (2000) 347-363.
[6] X.-H. Wu, Y.-P. Shen, C. Chen, An exact solution for functionally graded piezothermoelastic cylindrical shell as sensors or actuators, Materials Letters, 57(22-23) (2003) 3532-3542.
[7] A. Benjeddou, O. Andrianarison, A thermopiezoelectric mixed variational theorem for smart multilayered composites, Computers & structures, 83(15-16) (2005) 1266-1276.
[8] C.-P. Wu, Y.-H. Tsai, Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux, International Journal of Engineering Science, 45(9) (2007) 744-769.
[9] C.-P. Wu, Y.-S. Syu, Exact solutions of functionally graded piezoelectric shells under cylindrical bending, International Journal of Solids and Structures, 44(20) (2007) 6450-6472.
[10] H.-L. Dai, L. Hong, Y.-M. Fu, X. Xiao, Analytical solution for electromagnetothermoelastic behaviors of a functionally graded piezoelectric hollow cylinder, Applied Mathematical Modelling, 34(2) (2010) 343-357.
[11] H.-L. Dai, X. Xiao, Y.-M. Fu, Analytical solutions of stresses in functionally graded piezoelectric hollow structures, Solid State Communications, 150(15-16) (2010) 763-767.
[12] X.-F. Li, X.-L. Peng, K.Y. Lee, Radially polarized functionally graded piezoelectric hollow cylinders as sensors and actuators, European Journal of Mechanics-A/Solids, 29(4) (2010) 704-713.
[13] Z. Taotao, S. Zhifei, Analytical solutions of two kinds of piezoelectric actuators under shearing load, Smart Materials and Structures, 19(11) (2010) 115023.
[14] T. Zhang, Z. Shi, Exact analyses for two kinds of piezoelectric hollow cylinders with graded properties, Smart Struct. Syst, 6(8) (2010) 975-989.
[15] H. Wang, Parametric Analysis of Composite Cylinders with an Embedded Exponentially Graded Piezoelectric Layer, Journal of Thermoplastic Composite Materials, 24(1) (2011) 13-28.
[16] C.-P. Wu, T.-C. Tsai, Exact solutions of functionally graded piezoelectric material sandwich cylinders by a modified Pagano method, Applied Mathematical Modelling, 36(5) (2012) 1910-1930.
[17] G. Rahimi, M. Arefi, M. Khoshgoftar, Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method, Mechanics, 18(3) (2012) 292-300.
[18] M. Arefi, G. Rahimi, Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity, Acta Mechanica, 223(1) (2012) 63-79.
[19] H.-L. Dai, T. Dai, H.-Y. Zheng, Stresses distributions in a rotating functionally graded piezoelectric hollow cylinder, Meccanica, 47(2) (2012) 423-436.
[20] A. Ghorbanpour, A. Loghman, A. Abdollahitaheri, V. Atabakhshian, Electrothermomechanical behavior of a radially polarized rotating functionally graded piezoelectric cylinder, Journal of Mechanics of Materials and Structures, 6(6) (2011) 869-882.
[21] M. Arefi, G. Rahimi, M. Khoshgoftar, Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field, Smart Structures and Systems, 9(5) (2012) 427-439.
[22] J.J. Fesharaki, V.J. Fesharaki, M. Yazdipoor, B. Razavian, Two-dimensional solution for electro-mechanical behavior of functionally graded piezoelectric hollow cylinder, Applied Mathematical Modelling, 36(11) (2012) 5521-5533.
[23] M. Jabbari, M. Meshkini, M. Eslami, Nonaxisymmetric mechanical and thermal stresses in FGPPM hollow cylinder, Journal of Pressure Vessel Technology, 134(6) (2012) 061212.
[24] A. Loghman, H. Parsa, Exact solution for magneto-thermo-elastic behaviour of double-walled cylinder made of an inner FGM and an outer homogeneous layer, International Journal of Mechanical Sciences, 88 (2014) 93-99.
[25] M. Jabbari, M.B. Aghdam, Asymmetric Thermal Stresses of Hollow FGM Cylinders with Piezoelectric Internal and External Layers, Journal of Solid Mechanics, 7(3) (2015) 327-343.
[26] H.-L. Dai, H.-J. Jiang, Magnetothermoelastic bending analysis of a functionally graded material cylindrical shell, Mechanics of Advanced Materials and Structures, 22(4) (2015) 281-289.
[27] A. Atrian, J.J. Fesharaki, S. Nourbakhsh, Thermo-electromechanical behavior of functionally graded piezoelectric hollow cylinder under non-axisymmetric loads, Applied Mathematics and Mechanics, 36(7) (2015) 939-954.
[28] M. Jabbari, M. Zamani Nejad, Electro-mechanical Analysis of Rotating Cylinder Made of Functionally Graded Piezoelectric Materials: Sensor and Actuator, Amirkabir Journal of Mechanical Engineering, 51(1) (2019) 215-224 (in Persian).
[29] A. Fernandes, J. Pouget, Structural response of composite plates equipped with piezoelectric actuators, Computers & structures, 84(22-23) (2006) 1459-1470.
[30] M. Parhizkar Yaghoobi, I. Ghaffari, M. Ghannad, Stress and active control analysis of functionally graded piezoelectric material cylinder and disk under electro-thermo-mechanical loading, Journal of Intelligent Material Systems and Structures, 29(5) (2018) 924-937.
[31] M. Ghannad, M. Parhizkar Yaghoobi, A thermoelasticity solution for thick cylinders subjected to thermo-mechanical loads under various boundary conditions, ADMT Journal, 8(4) (2015) 1-11.
[32] M. Ghannad, M.P. Yaghoobi, 2D thermo elastic behavior of a FG cylinder under thermomechanical loads using a first order temperature theory, International Journal of Pressure Vessels and Piping, 149 (2017) 75-92.
[33] X. Wang, Z. Zhong, The general solution of spherically isotropic magnetoelectroelastic media and its applications, European Journal of Mechanics-A/Solids, 22(6) (2003) 953-969.
[34] A. Zingoni, Structural Engineering, Mechanics and Computation: SEMC 2001 (2 Volume Set), Elsevier, 2001.
[35] I. Ghaffari, M.P. Yaghoobi, M. Ghannad, Complete mechanical behavior analysis of FG Nano Beam under non-uniform loading using non-local theory, Materials Research Express, 5(1) (2018) 015016.
[36] P. Hagedorn, A. DasGupta, Vibrations and waves in continuous mechanical systems, Wiley Online Library, 2007.
[37] J. Yang, The mechanics of piezoelectric structures, World Scientific, 2006.