[1] K. Ghasemzadeh, S.M. Sadati Tilebon, A. Basile, Chapter 9 - Reforming and Partial Oxidation Reactions of Methanol for Hydrogen Production, in: Methanol, Elsevier, 2018, pp. 239-278.
[2] S. Ayabe, Omoto, H., Utaka, T., Kikuchi, R., Sasaki, K., Teraoka, Y., & Eguchi, K, Catalytic autothermal reforming of methane and propane over supported metal catalysts, (2003).
[3] S.E. Hosseini, M.A. Wahid, Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development, Renewable and Sustainable Energy Reviews, 57 (2016) 850-866.
[4] I.K. Kapdan, F. Kargi, Bio-hydrogen production from waste materials, Enzyme and Microbial Technology, 38(5) (2006) 569-582.
[5] R. Gupta, Hydrogen Fuel. Boca Raton: CRC Press., (2008).
[6] M.K. Nikoo, Saeidi, S. & Lohi, A., Clean Techn Environ Policy, (2015) 17: 2267.
[7] J.R. Rostrup-Nielsen, Syngas in perspective, Catalysis Today, 71(3) (2002) 243-247.
[8] C. Avila-Neto, S. Dantas, F. Silva, T. Franco, L. Romanielo, C. Hori, A. Assis, Hydrogen production from methane reforming: thermodynamic assessment and autothermal reactor design, Journal of Natural Gas Science and Engineering, 1(6) (2009) 205-215.
[9] K. Urasaki, S. Kado, A. Kiryu, K.-i. Imagawa, K. Tomishige, R. Horn, O. Korup, Y. Suehiro, Synthesis gas production by catalytic partial oxidation of natural gas using ceramic foam catalyst, Catalysis Today, 299 (2018) 219-228.
[10] S. Pruksawan, B. Kitiyanan, R.M. Ziff, Partial oxidation of methane on a nickel catalyst: Kinetic Monte-Carlo simulation study, Chemical Engineering Science, 147 (2016) 128-136.
[11] S. Sengodan, R. Lan, J. Humphreys, D. Du, W. Xu, H. Wang, S. Tao, Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications, Renewable and Sustainable Energy Reviews, 82 (2018) 761-780.
[12] Y. Jeon, D.-H. Park, J.-I. Park, S.-H. Yoon, I. Mochida, J.-H. Choy, Y.-G. Shul, Hollow Fibers Networked with Perovskite Nanoparticles for H(2) Production from Heavy Oil, Scientific Reports, 3 (2013) 2902.
[13] M.d.S. Santos, R.C.R. Neto, F.B. Noronha, P. Bargiela, M.d.G.C.d. Rocha, C. Resini, E. Carbó-Argibay, R. Fréty, S.T. Brandão, Perovskite as catalyst precursors in the partial oxidation of methane: The effect of cobalt, nickel and pretreatment, Catalysis Today, 299 (2018) 229-241.
[14] J.R.H.R. Ross, J.R.H.; van Keulen, A.N.J.; van Keulen, A.N.J.; Hegarty, M.E.S.; Seshan, Kulathuiyer, The catalytic conversion of natural gas to useful products, Catalysis Today, 30 (1996) 193-199.
[15] A. Moral, I. Reyero, J. Llorca, F. Bimbela, L.M. Gandía, Partial oxidation of methane to syngas using Co/Mg and Co/Mg-Al oxide supported catalysts, Catalysis Today, (2018).
[16] H. Huang, X. Zhou, H. Liu, A CFD model for partial oxidation of methane over self-sustained electrochemical promotion catalyst, International Journal of Hydrogen Energy, 41(1) (2016) 208-218.
[17] H.E. Figen, S.Z. Baykara, Hydrogen production by partial oxidation of methane over Co based, Ni and Ru monolithic catalysts, International Journal of Hydrogen Energy, 40(24) (2015) 7439-7451.
[18] F. Basile, G. Fornasari, F. Trifirò, A. Vaccari, Partial oxidation of methane: Effect of reaction parameters and catalyst composition on the thermal profile and heat distribution, Catalysis Today, 64(1) (2001) 21-30.
[19] C. Cheephat, P. Daorattanachai, S. Devahastin, N. Laosiripojana, Partial oxidation of methane over monometallic and bimetallic Ni-, Rh-, Re-based catalysts: Effects of Re addition, co-fed reactants and catalyst support, Applied Catalysis A: General, 563 (2018) 1-8.
[20] Y. Zhu, R. Barat, Partial oxidation of methane over a ruthenium phthalocyanine catalyst, Chemical Engineering Science, 116 (2014) 71-76.
[21] S. Eriksson, M. Nilsson, M. Boutonnet, S. Järås, Partial oxidation of methane over rhodium catalysts for power generation applications, Catalysis Today, 100(3) (2005) 447-451.
[22] M.M. Souza, M. Schmal, Methane conversion to synthesis gas by partial oxidation and CO2 reforming over supported platinum catalysts, Catalysis letters, 91(1) (2003) 11-17.
[23] R. Lanza, S.G. Järås, P. Canu, Partial oxidation of methane over supported ruthenium catalysts, Applied Catalysis A: General, 325(1) (2007) 57-67.
[24] R. Lanza, P. Canu, S.G. Järås, Methane partial oxidation over Pt–Ru catalyst: An investigation on the mechanism, Applied Catalysis A: General, 375(1) (2010) 92-100.
[25] R. Abbasi, G. Huang, G.M. Istratescu, L. Wu, R.E. Hayes, Methane oxidation over Pt, Pt:Pd, and Pd based catalysts: Effects of pre‐treatment, The Canadian Journal of Chemical Engineering, 93(8) (2015) 1474-1482.
[26] A. Bitsch-Larsen, R. Horn, L.D. Schmidt, Catalytic partial oxidation of methane on rhodium and platinum: Spatial profiles at elevated pressure, Applied Catalysis A: General, 348(2) (2008) 165-172.
[27] J. Tong, Y. Matsumura, Effect of catalytic activity on methane steam reforming in hydrogen-permeable membrane reactor, Applied Catalysis A: General, 286(2) (2005) 226-231.
[28] H. Stotz, L. Maier, O. Deutschmann, Methane Oxidation over Palladium: On the Mechanism in Fuel-Rich Mixtures at High Temperatures, (2016).
[29] O. Deutschmann, Correa, C., Tischer, S., Chatterjee, D., Kleditzsch, S. & Warnatz, J., DETCHEM Version 1.4.2.
http://rea2ow.iwr.uni-heidelberg.de/∼dmann/DETCHEM.html., (2001).
[30] R. Schwiedernoch, S. Tischer, C. Correa, O. Deutschmann, Experimental and numerical study on the transient behavior of partial oxidation of methane in a catalytic monolith, Chemical Engineering Science, 58(3) (2003) 633-642.
[31] H.K.M. David G. Goodwin, and Raymond L. Speth., Cantera: An object- oriented software toolkit for chemical kinetics, thermodynamics, and transport processes.
http://www.cantera.org, (2017).
[32] O. Deutschmann, R. Schwiedemoch, L.I. Maier, D. Chatterjee, Natural Gas Conversion in Monolithic Catalysts: Interaction of Chemical Reactions and Transport Phenomena, in: E. Iglesia, J.J. Spivey, T.H. Fleisch (Eds.) Studies in Surface Science and Catalysis, Elsevier, (2001) 251-258.
[33] S.S. Bharadwaj, L.D. Schmidt, Synthesis gas formation by catalytic oxidation of methane in fluidized bed reactors, Journal of Catalysis, 146(1) (1994) 11-21.