[1] R. Carvel and A. Beard, The Handbook of Tunnel Safety: Thomas Telford, 2005.
[2] Y. Z. Li, et al., “Study of critical velocity and back layering length in longitudinally ventilated tunnel
fires”, Fire SafetyJournal, vol. 45, pp. 361- 370, 2010.
[3] P. H. Thomas, et al., “The Movement of Smoke in Horizontal Passages Against an Air Flow”, BRE Trust.
Fire Research Station, 1968.
[4] Y. Oka and G. T. Atkinson, “Control of smoke flow in tunnel fires”, Fire Safety Journal, vol. 25, pp. 305-
322, 1995.
[5] G. T. Atkinson and Y. Wu, “Smoke Control in Sloping Tunnels”, Fire Safety Journal vol. 27, pp. 335- 341,
1996.
[6] Y. Wu and M. Z. A. Bakar, “Control of smoke flow in tunnel fires using longitudinal ventilation systems - a
study of the critical velocity”, Fire Safety Journal, vol. 35, pp. 363- 390, 2000
[7] K. Kang, “Characteristic length scale of critical ventilation velocity in tunnel smoke control”,
Tunnelling and Underground Space Technology, vol.24, pp. 205- 211, 2010.
[8] L. H. Hu, et al., “Studies on buoyancy-driven backlayering flow in tunnel fires”, Experimental Thermal
and Fluid Science, vol. 32, pp. 1468- 1483, 2008.
[9] S. S. Y. Jae Seong Roh, Hong Sun Ryou, Myong O Yoon, Youn Tae Jeong, “An experimental study on the
effect of ventilation velocity on burningrate in tunnel fires heptane pool fire case”, Building and Environment
vol. 43, pp. 1225- 1231, 2008.
[10] L. H. Hu, et al., “Critical wind velocity for arresting upwind gas and smoke dispersion induced by near-wall
fire in a road tunnel”, Journal of Hazardous Materials, vol. 150 pp. 68–75, 2008.
[11] K.-C. Tsai, et al., “Critical ventilation velocity for multi-source tunnel fires,” Journal of Wind
Engineering and Industrial Aerodynamics, vol. 98, pp. 650- 660, 2010.
[12] K.-C. Tsai, et al., “Critical ventilation velocity for tunnel fires occurring near tunnel exits”, Fire Safety
Journal, vol. 46, pp. 556- 557, 2011.
[13] L. H. Hua, et al., “Experimental studies on fireinduced buoyant smoke temperature distribution along
tunnel ceiling”, Building and Environment, vol. 42, pp. 3905- 3915, 2007.
[14] L. H. Hu, et al., “On the maximum smoke temperature under the ceiling in tunnel fires”, Tunnelling and
Underground Space Technology, vol. 21, pp. 650- 655,2006.
[15] B. Niknam, et al., “Determining Critical Wind Velocity During Fire Accident in Alborz Tunnel”,Amirkabir Journal of science and Technology, vol. 44,pp. 47- 55, 2012.
[16] C. G. Fan, et al., “Experimental study on transverse smoke temperature distribution in road tunnel fires”,
Tunnelling and Underground Space Technology, vol.37, pp. 89- 95, 2013.
[17] L. H. Hua, et al., “An experimental investigation and correlation on buoyant gas temperature below
ceiling in a slopping tunnel fire”, Applied Thermal Engineering, vol. 51, pp. 246- 254, 2013.
[18] K. McGrattan, et al., “Fire Dynamics Simulator (Version 5) User’s Guide”, vol. 1, ed: National
Institute of Standards and Technology, 2010.
[19] K. McGrattan , et al., “Fire Dynamics Simulator (Version 5) Technical Reference Guide”, vol. 1, ed:
National Institute of Standards and Technology, 2010.
[20] G. H. Yeoh and K. K. Yuen, “Computational Fluid Dynamics in Fire Engineering: Theory, Modelling and
Practice”, Elsevier Science, 2009.