تحلیل عددی پارامتر‌های موثر بر آلودگی صوتی لبه فرار جریان لایه مرزی آشفته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه یزد، یزد، ایران

2 هیات علمی-دانشگاه یزد

3 دانش‌آموخته دکتری، دانشکده مهندسی هوافضا، دانشگاه علوم و فنون هوایی شهید ستاری، تهران، ایران

چکیده

در مطالعه حاضر، یکی از مهم‌ترین مکانیزم‌های تولید نویز آیرودینامیکی به‌صورت عددی بررسی شده است. معادلات جریان ناپایای تراکم‌ناپذیر لایه مرزی آشفته با عدد ماخ 06/0، بر روی صفحه تخت به طول 30 سانتی‌متر با استفاده از رهیافت شبیه‌سازی گردابه‌های بزرگ در نرم‌افزار اوپن‌فوم حل شده و به منظور کاهش هزینه محاسباتی از مدل مرز ورودی لاند استفاده شده است. برای محاسبه پارامترهای موثر بر آلودگی صوتی لبه فرار ( شامل طیف فشار سطح، طول مشخصه نوسانات فشار در راستای دهانه مدل و سرعت جابجایی ساختارهای گردابه‌ای)، مقادیر فشار در نقاط مختلفی از سطح مدل صفحه تخت، با استفاده از ابزار کاوشگر داده‌برداری شده است. در نهایت آلودگی صوتی لبه فرار صفحه تخت در دوردست با استفاده از مدل تحلیلی امیت-راجر پیش‌بینی شده است. نتایج نشان داد که روش عددی بکار رفته در این مطالعه، ضمن برخورداری از هزینه محاسباتی معقول، از توانمندی مناسبی در پیش‌بینی مستقیم پارامترهای موثر بر آلودگی صوتی لبه فرار برخوردار است. همچنین بررسی پیش‌بینی و محاسبه مستقیم پارامترهای طیفی موثر بر آلودگی صوتی لبه فرار لایه مرزی آشفته، علاوه بر استفاده در مدل‌های پیش‌بینی آلودگی صوتی دوردست، اطلاعات دقیق و مناسبی از فیزیک جریان و ابعاد و طول عمر ساختارهای گردابه‌ای جریان لایه مرزی آشفته، فراهم می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Analysis of Parameters Affecting Turbulent Boundary Layer Trailing-Edge Noise

نویسندگان [English]

  • Mohammad Farmani 1
  • Ali Akbar Dehghan 2
  • Abbas Afshari 3
1 PhD Student, Department of Mechanical Engineering, Yazd University, Iran
2 Mech. Eng. Dept, Faculty of Engineering, Yazd University, IRAN
3 Ph.D. Graduate, Aero. Eng., Shahid Sattari Aeronautical University of Science and Technology, Tehran, Iran
چکیده [English]

In the present study, one of the most important mechanisms of aerodynamic noise generation is investigated numerically. The Large-eddy simulation approach used to solve the unsteady flow equations of the turbulent boundary layer with Mach number 0.06 over a flat plate of length 30 cm. Lund's inflow boundary model used to reduce computational cost. In order to evaluate the parameters affecting trailing edge noise (including surface pressure spectra, the spanwise length scale of the surface pressure fluctuations and eddy convection velocity), data of surface pressure fluctuations values in different points over the flat plate surface are collected using the probe tool in OpenFOAM software. Based on the calculated parameters affecting the trailing edge noise, the far-field noise is predicted using the analytical Amiet-Roger model. The results showed that the numerical solution method used in this study is capable of predicting the effective parameters on the trailing edge noise with a reasonable computational cost. Studying the spectral parameters affecting the turbulent boundary layer trailing edge noise showed that prediction and direct estimation of these parameters can be used to predict the far-field noise propagation. Moreover, these parameters can provide proper information on the physics of the flow and dimensions and lifetime of turbulent boundary layer vortex structures.

کلیدواژه‌ها [English]

  • Numerical analysis
  • Boundary layer
  • Turbulent flow
  • Trailing edge noise
[1] M. Roger, S. Moreau, M. Wang, An analytical model for predicting airfoil self-noise using wall-pressure statistics, in:  Annual Research Brief, Center for Turbulence Research, Stanford University, 2002, pp. 405-414.
[2] W.K. Blake, Mechanics of flow-induced sound and vibration, Volume 2: Complex flow-structure interactions, Academic press, 2012.
[3] S. Oerlemans, P. Sijtsma, B.M. López, Location and quantification of noise sources on a wind turbine, Journal of sound and vibration, 299(4-5) (2007) 869-883.
[4] T.F. Brooks, D.S. Pope, M.A. Marcolini, Airfoil self-noise and prediction, National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.
[5] S. Oerlemans, M. Fisher, T. Maeder, K. Kögler, Reduction of wind turbine noise using optimized airfoils and trailing-edge serrations, AIAA journal, 47(6) (2009) 1470-1481.
[6] R.K. Amiet, Noise due to turbulent flow past a trailing edge, Journal of sound and vibration, 47(3) (1976) 387-393.
[7] M.S. Howe, A review of the theory of trailing edge noise, Journal of sound and vibration, 61(3) (1978) 437-465.
[8] M.J. Lighthill, On sound generated aerodynamically I. General theory, in:  Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1952, pp. 564-587.
[9] A. Powell, On the aerodynamic noise of a rigid flat plate moving at zero incidence, The Journal of the Acoustical Society of America, 31(12) (1959) 1649-1653.
[10] M.V.M. Fink, Experimental evaluation of theories for trailing edge and incidence fluctuation noise, AIAA Journal, 13(11) (1975) 1472-1477.
[11] J. Yu, C. W. Tam, Experimental investigation of the trailing edge noise mechanism, AIAA Journal, 16(10) (1978) 1046-1052.
[12] T.F. Brooks, T. Hodgson, Trailing edge noise prediction from measured surface pressures, Journal of sound and vibration, 78(1) (1981) 69-117.
[13] S. Moreau, M. Roger, Effect of airfoil aerodynamic loading on trailing edge noise sources, AIAA journal, 43(1) (2005) 41-52.
[14] G. Corcos, Resolution of pressure in turbulence, The Journal of the Acoustical Society of America, 35(2) (1963) 192-199.
[15] Y. Rozenberg, M. Roger, S. Moreau, Rotating blade trailing-edge noise: Experimental validation of analytical model, AIAA journal, 48(5) (2010) 951-962.
[16] A. Herrig, M. Kamruzzaman, W. Würz, S. Wagner, Broadband airfoil trailing-edge noise prediction from measured surface pressures and spanwise length scales, International Journal of Aeroacoustics, 12(1-2) (2013) 53-82.
[17] Y. Guan, S. Pröbsting, D. Stephens, A. Gupta, S.C. Morris, On the wake flow of asymmetrically beveled trailing edges, Experiments in Fluids, 57(5) (2016) 78.
[18] B. Zajamsek, C.J. Doolan, D.J. Moreau, J. Fischer, Z. Prime, Experimental investigation of trailing edge noise from stationary and rotating airfoils, The Journal of the Acoustical Society of America, 141(5) (2017) 3291-3301.
[19] A. Afshari, A. Dehghan, V. Kalantar, M. Farmani, Experimental investigation of surface pressure spectra beneath turbulent boundary layer over a flat plate with microphone, Modares Journal of Mechanical Engineering, 17(1) (2017) 263-272 (In Persian).
[20] A. Afshari, A.A. Dehghan, M. Farmani, Experimental investigation of trailing edge noise by measuring unsteady surface pressures, Amirkabir Journal of Mechanical Engineering,  (2017) (In Persian).
[21] N. Hu, N. Reiche, R. Ewert, Simulation of turbulent boundary layer wall pressure fluctuations via Poisson equation and synthetic turbulence, Journal of Fluid Mechanics, 826 (2017) 421-454.
[22] D.J. Moreau, L.A. Brooks, C.J. Doolan, Broadband trailing edge noise from a sharp-edged strut, The Journal of the Acoustical Society of America, 129(5) (2011) 2820-2829.
[23] M. Kamruzzaman, D. Bekiropoulos, A. Wolf, T. Lutz, E. Kraemer, Rnoise: A RANS based airfoil trailing-edge noise prediction model, in:  20th AIAA/CEAS Aeroacoustics Conference, 2014, pp. 3305.
[24] Y.C. Kucukosman, J. Christophe, C.F. Schram, RANS-based trailing-edge noise prediction using Amiets theory: accuracy and mesh sensitivity of semi-empirical and integral wall pressure models, in:  2018 AIAA/CEAS Aeroacoustics Conference, 2018, pp. 3793.
[25] Y. Shi, S. Lee, Numerical Study of 2-D Finlets Using RANS CFD for Trailing Edge Noise Reduction, in:  2018 AIAA/CEAS Aeroacoustics Conference, 2018, pp. 2812.
[26] D. Chase, The character of the turbulent wall pressure spectrum at subconvective wavenumbers and a suggested comprehensive model, Journal of Sound and Vibration, 112(1) (1987) 125-147.
[27] M. Goody, Empirical spectral model of surface pressure fluctuations, AIAA journal, 42(9) (2004) 1788-1794.
[28] T.S. Lund, X. Wu, K.D. Squires, Generation of turbulent inflow data for spatially-developing boundary layer simulations, Journal of computational physics, 140(2) (1998) 233-258.
[29] D.K. Lilly, A proposed modification of the Germano subgrid‐scale closure method, Physics of Fluids A: Fluid Dynamics, 4(3) (1992) 633-635.
[30] J.S. Bendat, A.G. Piersol, Random data: analysis and measurement procedures, John Wiley & Sons, 2011.
[31] M.P. Simens, J. Jiménez, S. Hoyas, Y. Mizuno, A high-resolution code for turbulent boundary layers, Journal of Computational Physics, 228(11) (2009) 4218-4231.
[32] P.R. Spalart, Direct simulation of a turbulent boundary layer up to R θ = 1410, Journal of Fluid Mechanics, 187(-1) (1988) 61.
[33] C. Wagner, T. Hüttl, P. Sagaut, Large-eddy simulation for acoustics, Cambridge University Press, 2007.
[34] A. Afshari, M. Azarpeyvand, A. Dehghan, M. Szőke, Three-dimensional surface treatments for trailing edge noise reduction, in:  23rd International Congress on Sound and Vibration, Athens, Greece, 2016, pp. 3974-3981.
[35] A. Smits, N. Matheson, P. Joubert, Low-Reynolds-number turbulent boundary layers in zero and favourable pressure gradients, Journal of Ship Research, 27(3) (1983) 147-157.
[36] D.B. Spalding, A Single Formula for the “Law of the Wall”, Journal of Applied Mechanics, 28(3) (1961) 455.
[37] G. Schewe, On the structure and resolution of wall-pressure fluctuations associated with turbulent boundary-layer flow, Journal of Fluid Mechanics, 134 (1983) 311-328.
[38] S. Lee, A. Villaescusa, Comparison and Assessment of Recent Empirical Models for Turbulent Boundary Layer Wall Pressure Spectrum, in:  23rd AIAA/CEAS Aeroacoustics Conference, 2017, pp. 3688.
[39] Y.F. Hwang, W.K. Bonness, S.A. Hambric, Comparison of semi-empirical models for turbulent boundary layer wall pressure spectra, Journal of Sound and Vibration, 319(1-2) (2009) 199-217.
[40] S. Pröbsting, F. Scarano, M. Bernardini, S. Pirozzoli, On the estimation of wall pressure coherence using time-resolved tomographic PIV, Experiments in fluids, 54(7) (2013) 1567.
[41] A. Afshari, M. Azarpeyvand, A.A. Dehghan, M. Szőke, R. Maryami, Trailing-edge flow manipulation using streamwise finlets, Journal of Fluid Mechanics, 870 (2019) 617-650.