[1] G. Lippmann, Relations entre les phénomènes électriques et capillaires, Gauthier-Villars Paris, France:, 1875.
[2] U.-C. Yi, C.-J. Kim, Characterization of electrowetting actuation on addressable single-side coplanar electrodes, Journal of Micromechanics and Microengineering, 16(10) (2006) 2053.
[3] H. Oprins, J. Danneels, B. Van Ham, B. Vandevelde, M. Baelmans, Convection heat transfer in electrostatic actuated liquid droplets for electronics cooling, Microelectronics Journal, 39(7) (2008) 966-974.
[4] N. Rajabi, A. Dolatabadi, A novel electrode shape for electrowetting-based microfluidics, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 365(1-3) (2010) 230-236.
[5] O.N.M. Izadpanahi, Alireza & Jian Abed, Ghazale & Passandideh-fard, Mohammad, Numerical investigation of water drop movement within a microchannel under electrowetting phenomenon, in persian, (2015).
[6] H. Chen, T. Tang, A. Amirfazli, Effect of contact angle hysteresis on breakage of a liquid bridge, The European Physical Journal Special Topics, 224(2) (2015) 277-288.
[7] Y. Wang, M. Do-Quang, G. Amberg, Viscoelastic droplet dynamics in a Y-shaped capillary channel, Physics of fluids, 28(3) (2016) 033103.
[8] R.H. Vafaie, B.S. Dudkanlu, N. Fatehi, Theoretical and Simulational Study of Electrowetting on Dielectric (EWOD) Effect, in: Electrical Engineering (ICEE), Iranian Conference on, IEEE, 2018, pp. 48-52.
[9] A. Banpurkar, M.H. Duits, D.v.d. Ende, F. Mugele, Electrowetting of complex fluids: perspectives for rheometry on chip, Langmuir, 25(2) (2008) 1245-1252.
[10] H. Zeng, A.D. Feinerman, Z. Wan, P.R. Patel, Piston-motion micromirror based on electrowetting of liquid metals, Journal of Microelectromechanical Systems, 14(2) (2005) 285-294.
[11] R. Yan, T.S. McClure, I.H. Jasim, A.K.R. Koppula, S. Wang, M. Almasri, C.-L. Chen, Enhanced water capture induced with electrowetting-on-dielectric (EWOD) approach, Applied Physics Letters, 113(20) (2018) 204101.
[12] J.S. Kuo, P. Spicar-Mihalic, I. Rodriguez, D.T. Chiu, Electrowetting-induced droplet movement in an immiscible medium, Langmuir, 19(2) (2003) 250-255.
[13] S. Alavi, M. Passandideh-Fard, M.H. Tafteh, Electrowetting actuation for a sessile liquid drop: experiments and simulations, in: ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, American Society of Mechanical Engineers, 2011, pp. 609-618.
[14] R.S. Hale, V. Bahadur, Electrowetting heat pipes for heat transport over extended distances, IEEE Transactions on Components, Packaging and Manufacturing Technology, 5(10) (2015) 1441-1450.
[15] J. Gong, G. Cha, Y.S. Ju, Thermal switches based on coplanar EWOD for satellite thermal control, in: 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, IEEE, 2008, pp. 848-851.
[16] G. McHale, B.V. Orme, G.G. Wells, R.A. Ledesma-Aguilar, Apparent Contact Angles on Lubricant Impregnated Surfaces/SLIPS: From Superhydrophobicity to Electrowetting, Langmuir, (2019).
[17] J. Hong, Y.K. Kim, K.H. Kang, J.M. Oh, I.S. Kang, Effects of drop size and viscosity on spreading dynamics in DC electrowetting, Langmuir, 29(29) (2013) 9118-9125.
[18] A. TröIs, E.K. Reichel, B. Jakoby, FEM modeling and capillary wave analysis of electrowetting induced droplet oscillations, in: 2018 IEEE SENSORS, IEEE, 2018, pp. 1-4.
[19] Chhabra RP. Non-Newtonian fluids: an introduction. In Rheology of complex fluids 2010 (pp. 3-34). Springer, New York, NY.
[20] M. Ramezanpour, M. Maerefat, M. Mokhtari-Dizaji, The effects of compliance mismatch on the End to Side bypass graft, Modares Mechanical Engineering, 15(5) (2015) 279-286.(In Persian)