[1] S.M. Hosseini, J.J. Feng, Pressure boundary conditions for computing incompressible flows with SPH, Journal of Computational physics, 230(19) (2011) 7473-7487.
[2] A. Mussa, P. Asinari, L.-S. Luo, Lattice Boltzmann simulations of 2D laminar flows past two tandem cylinders, Journal of computational physics, 228(4) (2009) 983-999.
[3] P. Wang, Z. Guo, A semi-implicit gas-kinetic scheme for smooth flows, Computer Physics Communications, 205 (2016) 22-31.
[4] B. Narváez-Romo, J.R. Simões-Moreira, Falling Film Evaporation: An Overview, in: Proceedings of 22nd International Congress of Mechanical Engineering–COBEM, 2013, pp. 3-7.
[5] S. Mirjalili, S.S. Jain, M. Dodd, Interface-capturing methods for two-phase flows: An overview and recent developments, Center for Turbulence Research Annual Research Briefs, (2017) 117-135.
[6] Z.-H. Liu, Q.-Z. Zhu, Heat transfer in a subcooled water film falling across a horizontal heated tube, Chemical Engineering Communications, 192(10) (2005) 1334-1346.
[7] V. Ribeiro, P. Coelho, F. Pinho, M. Alves, Laminar Flow Past a Confined Cylinder, in: Conferência Nacional em Mecânica de Fluidos, 2009.
[8] A. Kumar, Numerical Study of Falling Film Thickness on Horizontal Circular Tube-A CFD Approach, Int J Adv Technol, 7(169) (2016) 2.
[9] I. Hassan, A. Sadikin, N.M. Isa, The numerical modelling of falling film thickness flow on horizontal tubes, in: AIP Conference Proceedings, AIP Publishing, 2017, pp. 020020.
[10] O. Filippova, D. Hänel, Boundary-fitting and local grid refinement for lattice-BGK models, International Journal of Modern Physics C, 9(08) (1998) 1271-1279.
[11] S. Mirjalili, C.B. Ivey, A. Mani, Cost and accuracy comparison between the diffuse interface method and the geometric volume of fluid method for simulating two-phase flows, in: APS Meeting Abstracts, 2016.
[12] K. Sankaranarayanan, I. Kevrekidis, S. Sundaresan, J. Lu, G. Tryggvason, A comparative study of lattice Boltzmann and front-tracking finite-difference methods for bubble simulations, International Journal of Multiphase Flow, 29(1) (2003) 109-116.
[13] L. Scarbolo, D. Molin, P. Perlekar, M. Sbragaglia, A. Soldati, F. Toschi, Unified framework for a side-by-side comparison of different multicomponent algorithms: Lattice Boltzmann vs. phase field model, Journal of Computational Physics, 234 (2013) 263-279.
[14] M. Dzikowski, L. Jasinski, M. Dabrowski, Depth-averaged Lattice Boltzmann and Finite Element methods for single-phase flows in fractures with obstacles, Computers & Mathematics with Applications, 75(10) (2018) 3453-3470.
[15] S. Ryu, S. Ko, A comparative study of lattice Boltzmann and volume of fluid method for two-dimensional multiphase flows, Nuclear Engineering and Technology, 44(6) (2012) 623-638.
[16] S. Mukherjee, A. Zarghami, C. Haringa, K. van As, S. Kenjereš, H.E. Van den Akker, Simulating liquid droplets: A quantitative assessment of lattice Boltzmann and Volume of Fluid methods, International Journal of Heat and Fluid Flow, 70 (2018) 59-78.
[17] T. Lee, Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary fluids, Computers & Mathematics with Applications, 58(5) (2009) 987-994.
[18] M.A. Hatani, M. Farhadzadeh, M.H. Rahimian, Investigation of vapor condensation on a flat plate and horizontal cryogenic tube using lattice Boltzmann method, International Communications in Heat and Mass Transfer, 66 (2015) 218-225.
[19] K. Fallah, A. Fardad, N. Sedaghatizadeh, E. Fattahi, A. Ghaderi, Numerical simulation of flow around two rotating circular cylinders in staggered arrangement by multi-relaxation-time lattice Boltzmann method at low Reynolds number, World Applied Sciences Journal, 15(4) (2011) 544-554.
[20] R. Mei, D. Yu, W. Shyy, L.-S. Luo, Force evaluation in the lattice Boltzmann method involving curved geometry, Physical Review E, 65(4) (2002) 041203.
[21] Z. Guo, C. Zheng, B. Shi, An extrapolation method for boundary conditions in lattice Boltzmann method, Physics of fluids, 14(6) (2002) 2007-2010.
[22] T. Inamuro, M. Yoshino, H. Inoue, R. Mizuno, F. Ogino, A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem, Journal of Computational Physics, 179(1) (2002) 201-215.
[23] H. Safari, M.H. Rahimian, M. Krafczyk, Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow, Physical Review E, 88(1) (2013) 013304.
[24] D.M. S. Gokaltun, A lattice Bo Simulation of Gas Bubble in Multiphase Flows With high DensityRatios, WM2011 Conference, Phoneis., ( 2011).
[25] H. Zheng, C. Shu, Y.-T. Chew, A lattice Boltzmann model for multiphase flows with large density ratio, Journal of Computational Physics, 218(1) (2006) 353-371.
[26] S. Tilehboni, K. Sedighi, M. Farhadi, E. Fattahi, Lattice Boltzmann simulation of deformation and breakup of a droplet under gravity force using interparticle potential model, International Journal of Engineering-Transactions A: Basics, 26(7) (2013) 781.
[27] J. Szekely, M. Todd, Natural convection in a rectangular cavity transient behavior and two phase systems in laminar flow, International Journal of Heat and Mass Transfer, 14(3) (1971) 467-482.
[28] R.D. Haberstroh, R.D. Reinders, Conducting-sheet model for natural convection through a density-stratified interface, International Journal of Heat and Mass Transfer, 17(2) (1974) 307-311.
[29] C. Wang, M. Sen, P. Vasseur, Analytical investigation of Bénard-Marangoni convection heat transfer in a shallow cavity filled with two immiscible fluids, Applied Scientific Research, 48(1) (1991) 35-53.
[30] D. Yung, J. Lorenz, E. Ganic, Vapor/liquid interaction and entrainment in shell-and-tube evaporators, Argonne National Lab., Ill.(USA), 1978.
[31] A. Bejan, Convection heat transfer, John wiley & sons, 2013.