[1] S. Priya, D.J. Inman, Energy Harvesting Technologies, Springer US, Boston, MA, 2009.
[2] K. Takeya, E. Sasaki, Y. Kobayashi, Design and parametric study on energy harvesting from bridge vibration using tuned dual-mass damper systems, Journal of Sound and Vibration, 361 (2016) 50-65.
|
[3] K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, V.V. Kokorin, Large magnetic‐field‐induced strains in Ni 2 MnGa single crystals, Applied Physics Letters, 69 (1996) 1966-1968.
|
[4] J. Tellinen, I. Suorsa, I. Aaltio, K. Ullakko, Basic Properties of Magnetic Shape Memory Actuators, in: 8th international conference ACTUATOR 2002, 2002, pp. 10-12.
|
[5] S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology, 17 (2006) R175-R195.
|
[6] N. Tran, M.H. Ghayesh, M. Arjomandi, Ambient vibration energy harvesters: A review on nonlinear techniques for performance enhancement, International Journal of Engineering Science, 127 (2018) 162-185.
|
[7] I. Karaman, B. Basaran, H.E. Karaca, A.I. Karsilayan, Y.I. Chumlyakov, Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy, Applied Physics Letters, 90(17) (2007) 172505-172505.
|
[8] D. Avirovik, A. Kumar, R.J. Bodnar, S. Priya, Remote light energy harvesting and actuation using shape memory alloy—piezoelectric hybrid transducer, Smart Materials and Structures, 22(5) (2013) 052001.
|
[9] N.M. Bruno, C. Ciocanel, H.P. Feigenbaum, A. Waldauer, A theoretical and experimental investigation of power harvesting using the NiMnGa martensite reorientation mechanism, Smart Materials and Structures, 21 (2012) 094018.
|
[10] A.J. Niskanen, I. Laitinen, Design and Simulation of a Magnetic Shape Memory (MSM) Alloy Energy Harvester, Advances in Science and Technology, 78 (2012) 58-62.
|
[11] M. Gueltig, H. Ossmer, M. Ohtsuka, H. Miki, K. Tsuchiya, T. Takagi, M. Kohl, High Frequency Thermal Energy Harvesting Using Magnetic Shape Memory Films, Advanced Energy Materials, 4(17) (2014) 1400751.
|
[12] B. Gusarov, E. Gusarova, B. Viala, L. Gimeno, S. Boisseau, O. Cugat, E. Vandelle, B. Louison, Thermal energy harvesting by piezoelectric PVDF polymer coupled with shape memory alloy, Sensors and Actuators A: Physical, 243 (2016) 175-181.
|
[13] A.B. Waldauer, H.P. Feigenbaum, C. Ciocanel, N.M. Bruno, Improved thermodynamic model for magnetic shape memory alloys, Smart Materials and Structures, 21(9) (2012) 094015.
|
[14] B. Kiefer, D.C. Lagoudas, Modeling the coupled strain and magnetization response of magnetic shape memory alloys under magnetomechanical loading, Journal of Intelligent Material Systems and Structures, 20(2) (2009) 143-170.
|
[15] H. Sayyaadi, M.A.A. Farsangi, Frequency-dependent energy harvesting via magnetic shape memory alloys, Smart Materials and Structures, 24 (2015) 115022.
|
[16] M. Aureli, C. Prince, M. Porfiri, S.D. Peterson, Energy harvesting from base excitation of ionic polymer metal composites in fluid environments, Smart Materials and Structures, 19 (2010) 015003.
|
[17] M.A.A. Farsangi, H. Sayyaadi, M.R. Zakerzadeh, A novel inertial energy harvester using magnetic shape memory alloy, Smart Materials and Structures, 25 (2016) 105024.
|
[18] M.A.A. Farsangi, F. Cottone, H. Sayyaadi, M.R. Zakerzadeh, F. Orfei, L. Gammaitoni, Energy harvesting from structural vibrations of magnetic shape memory alloys, Applied Physics Letters, 110 (2017) 103905.
|
[19] Q. Dai, I. Park, R.L. Harne, Impulsive energy conversion with magnetically coupled nonlinear energy harvesting systems, Journal of Intelligent Material Systems and Structures, 29(11) (2018) 2374-2391.
|
[20] A. Erturk, D.J. Inman, An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations, Smart Materials and Structures, 18(2) (2009) 025009-025009.
|
[21] S. Mohammadi, A. Esfandiari, Magnetostrictive vibration energy harvesting using strain energy method, Energy, 81 (2015) 519-525.
|
[22] V.C. de Sousa, C. De Marqui Junior, Airfoil-based piezoelectric energy harvesting by exploiting the pseudoelastic hysteresis of shape memory alloy springs, Smart Materials and Structures, 24(12) (2015) 125014.
|
[23] M. Borowiec, Energy harvesting of cantilever beam system with linear and nonlinear piezoelectric model, The European Physical Journal Special Topics, 224 (2015) 2771-2785.
|
[24] W. Cai, R.L. Harne, Electrical power management and optimization with nonlinear energy harvesting structures, Journal of Intelligent Material Systems and Structures, 30 (2019) 213-227.
|
[25] S. Roundy, P.K. Wright, J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes, Computer Communications, 26 (2003) 1131-1144.
|
[26] M. Shirani, M. Kadkhodaei, A modified constitutive model with an enhanced phase diagram for ferromagnetic shape memory alloys, Journal of Intelligent Material Systems and Structures, 26 (2015) 56-68.
|
[27] B. Kiefer, D.C. Lagoudas, Application of a magnetic SMA constitutive model in the analysis of magnetomechanical boundary value problems, SPIE, 2006.
|
[28] B.D. Coleman, W. Noll, The Thermodynamics of Elastic Materials with Heat Conduction and Viscosity, in: The Foundations of Mechanics and Thermodynamics, Springer Berlin Heidelberg, Berlin, Heidelberg, 1974, pp. 145-156.
|
[29] H.P. Feigenbaum, C. Ciocanel, Experiments and Modeling of the Magneto-Mechanical Response of Magnetic Shape Memory Alloys, in: ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2009, pp. 519-527.
|
[30] A.H. Nayfeh, D.T. Mook, Forced Oscillations of Systems Having a Single Degree of Freedom, Wiley-VCH Verlag GmbH, Weinheim, Germany, 1995.
|
[31] K. Haldar, B. Kiefer, D.C. Lagoudas, Finite element analysis of the demagnetization effect and stress inhomogeneities in magnetic shape memory alloy samples, Philosophical Magazine, 91 (2011) 4126-4157.
|
[32] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.
|