[1] O. Masoso, L.J. Grobler, The dark side of occupants’ behaviour on building energy use, Energy and buildings, 42(2) (2010) 173-177.
[2] A.M. Omer, Renewable building energy systems and passive human comfort solutions, Renewable and sustainable energy reviews, 12(6) (2008) 1562-1587.
[3] S. Delfani, J. Esmaeelian, H. Pasdarshahri, M. Karami, Energy saving potential of an indirect evaporative cooler as a pre-cooling unit for mechanical cooling systems in Iran, Energy and Buildings, 42(11) (2010) 2169-2176.
[4] F. Kojok, F. Fardoun, R. Younes, R. Outbib, Hybrid cooling systems: A review and an optimized selection scheme, Renewable and Sustainable Energy Reviews, 65 (2016) 57-80.
[5] İ. Uçkan, T. Yılmaz, E. Hürdoğan, O. Büyükalaca, Experimental investigation of a novel configuration of desiccant based evaporative air conditioning system, Energy conversion and management, 65 (2013) 606-615.
[6] M.K. Shahzad, G.Q. Chaudhary, M. Ali, N.A. Sheikh, M.S. Khalil, T.U. Rashid, Experimental evaluation of a solid desiccant system integrated with cross flow Maisotsenko cycle evaporative cooler, Applied Thermal Engineering, 128 (2018) 1476-1487.
[7] G.Q. Chaudhary, M. Ali, N.A. Sheikh, S. Khushnood, Integration of solar assisted solid desiccant cooling system with efficient evaporative cooling technique for separate load handling, Applied Thermal Engineering, 140 (2018) 696-706.
[8] L. Chen, S. Chen, L. Liu, B. Zhang, Experimental investigation of precooling desiccant-wheel air-conditioning system in a high-temperature and high-humidity environment, International Journal of Refrigeration, 95 (2018) 83-92.
[9] G. Heidarinejad, V. Khalajzadeh, S. Delfani, Performance analysis of a ground-assisted direct evaporative cooling air conditioner, Building and Environment, 45(11) (2010) 2421-2429.
[10] S. El-Agouz, A. Kabeel, Performance of desiccant air conditioning system with geothermal energy under different climatic conditions, Energy conversion and management, 88 (2014) 464-475.
[11] Y. Abbassi, E. Baniasadi, H. Ahmadikia, Comparative performance analysis of different solar desiccant dehumidification systems, Energy and Buildings, 150 (2017) 37-51.
[12] D. Pandelidis, A. Pacak, A. Cichoń, S. Anisimov, P. Drąg, B. Vager, V. Vasilijev, Multi-stage desiccant cooling system for moderate climate, Energy conversion and management, 177 (2018) 77-90.
[13] A. Asadi, B. Roshanzadeh, Improving performance of two-stage desiccant cooling system by analyzing different regeneration configurations, Journal of Building Engineering, 25 (2019) 100807.
[14] A. Heidari, R. Roshandel, V. Vakiloroaya, An innovative solar assisted desiccant-based evaporative cooling system for co-production of water and cooling in hot and humid climates, Energy Conversion and Management, 185 (2019) 396-409.
[15] P. Bareschino, G. Diglio, F. Pepe, G. Angrisani, C. Roselli, M. Sasso, Numerical study of a MIL101 metal organic framework based desiccant cooling system for air conditioning applications, Applied Thermal Engineering, 124 (2017) 641-651.
[16] A. Heidari, H. Rostamzadeh, A. Avami, A novel hybrid desiccant-based ejector cooling system for energy and carbon saving in hot and humid climates, International Journal of Refrigeration, 101 (2019) 196-210.
[17] G. Panaras, E. Mathioulakis, V. Belessiotis, N. Kyriakis, Experimental validation of a simplified approach for a desiccant wheel model, Energy and Buildings, 42(10) (2010) 1719-1725.
[18] G. Heidarinejad, H. Pasdarshahri, The effects of operational conditions of the desiccant wheel on the performance of desiccant cooling cycles, Energy and Buildings, 42(12) (2010) 2416-2423.
[19] T. Sokhansefat, A. Kasaeian, K. Rahmani, A.H. Heidari, F. Aghakhani, O. Mahian, Thermoeconomic and environmental analysis of solar flat plate and evacuated tube collectors in cold climatic conditions, Renewable energy, 115 (2018) 501-508.
[20] D. Jani, M. Mishra, P. Sahoo, Performance studies of hybrid solid desiccant–vapor compression air-conditioning system for hot and humid climates, Energy and Buildings, 102 (2015) 284-292.
[21] A. Arteconi, C. Brandoni, G. Rossi, F. Polonara, Experimental evaluation and dynamic simulation of a ground coupled heat pump for a commercial building, International Journal of Energy Research, 37(15) (2013) 1971-1980.
[22] A. Cacabelos, P. Eguía, J.L. Míguez, E. Granada, M.E. Arce, Calibrated simulation of a public library HVAC system with a ground-source heat pump and a radiant floor using TRNSYS and GenOpt, Energy and Buildings, 108 (2015) 114-126.
[23] M. Mehrpooya, H. Hemmatabady, M.H. Ahmadi, Optimization of performance of combined solar collector-geothermal heat pump systems to supply thermal load needed for heating greenhouses, Energy Conversion and Management, 97 (2015) 382-392.
[24] S. Klein, B. Newton, J. Thornton, D. Bradley, J. Mitchell, M. Kummert, TRNSYS Reference Manual: Mathematical Reference, 16, Solar Energy Laboratory, University of Wisconsin-Madison, Madison, WI, (2006).
[25] M. Kharseh, M. Al-Khawaja, M.T. Suleiman, Potential of ground source heat pump systems in cooling-dominated environments: Residential buildings, Geothermics, 57 (2015) 104-110.
[26] K. Ghali, Energy savings potential of a hybrid desiccant dehumidification air conditioning system in Beirut, Energy Conversion and Management, 49(11) (2008) 3387-3390.
[27] Y. Guan, Y. Zhang, Y. Sheng, X. Kong, S. Du, Feasibility and economic analysis of solid desiccant wheel used for dehumidification and preheating in blast furnace: A case study of steel plant, Nanjing, China, Applied Thermal Engineering, 81 (2015) 426-435.
[28] T. Ge, F. Ziegler, R. Wang, H. Wang, Performance comparison between a solar driven rotary desiccant cooling system and conventional vapor compression system (performance study of desiccant cooling), Applied Thermal Engineering, 30(6-7) (2010) 724-731.
[29] R. Qi, L. Lu, Y. Huang, Parameter analysis and optimization of the energy and economic performance of solar-assisted liquid desiccant cooling system under different climate conditions, Energy conversion and management, 106 (2015) 1387-1395.
[30] A. Kodama, T. Hirayama, M. Goto, T. Hirose, R. Critoph, The use of psychrometric charts for the optimisation of a thermal swing desiccant wheel, Applied Thermal Engineering, 21(16) (2001) 1657-1674.
[31] M.-H. Kim, J.-S. Park, J.-W. Jeong, Energy saving potential of liquid desiccant in evaporative-cooling-assisted 100% outdoor air system, Energy, 59 (2013) 726-736.
[32] J. Watt, Evaporative air conditioning handbook, Springer Science & Business Media, 2012.
[33] S. De Antonellis, M. Intini, C.M. Joppolo, Desiccant wheels effectiveness parameters: correlations based on experimental data, Energy and Buildings, 103 (2015) 296-306.
[34] S. Kalogirou, The potential of solar industrial process heat applications, Applied Energy, 76(4) (2003) 337-361.
[35] T. Sokhansefat, D. Mohammadi, A. Kasaeian, A. Mahmoudi, Simulation and parametric study of a 5-ton solar absorption cooling system in Tehran, Energy Conversion and Management, 148 (2017) 339-351.