[1] Nanocoating-Development-Center, Application of Hard and Resistant Nanocoatings in Industry, Nano Technology Development Headquarter, Tehran, 2017. (in Persian)
[2] Z.H. Xu, L. Yuan, D.B. Shan, B. Guo, A molecular dynamics simulation of TiN film growth on TiN(0 0 1), Computational Materials Science, 50 (2011) 1432–1436.
[3] W. Yang, G. Ayoub, I. Salehinia, B. Mansoor, H. Zbib, Multiaxial tension/compression asymmetry of Ti/TiN nano laminates: MD investigation, Acta Materialia, 135 (2017) 348-360.
[4] T. Iwasaki, Molecular dynamics study of adhesion strength and diffusion at interfaces between interconnect materials and underlay materials, Computational Mechanics, 25 (2000) 78-86.
[5] Y. Cao, J. Zhang, T. Sun, Y. Yan, F. Yu, Atomistic study of deposition process of Al thin film on Cu substrate, Applied Surface Science, 256 (2010) 5993-5997.
[6] G.H. Feng, L. Wei, W.L. Min, L.G. Ping, Cluster size and substrate temperature affecting thin film formation during copper cluster deposition on a Si (001) surface, Chin. Phys. B, 21 (2012) 113601-113608.
[7] T. Zientarski, D. Chocyk, Structure and stress in Cu/Au and Fe/Au systems: A molecular dynamics study, Thin Solid Films, (2014) 1-6.
[8] S. Zhanga, H. Gonga, X. Chena, G. Lia, Z. Wang, Low energy Cu clusters slow deposition on a Fe (001) surface investigated by molecular dynamics simulation, Applied Surface Science, 314 (2014) 433-442.
[9] J.C. Huang, The Study on Deposition of Cu/Co Multilayer Nano Thin Films under Gravitational Effect by Molecular Dynamics, in: L. Prior Meen (Ed.) International Conference on Applied System Innovation, IEEE, 2017, pp. 1579-1582.
[10] J. Zhang, Molecular dynamics study of crack propagation behavior and mechanisms in Nickel, The Ohio State University, 2011.
[11] Z. Yang, Y. Zhou, T. Wang, Q. Liu, Z. Lu, Crack propagation behaviors at Cu/SiC interface by molecular dynamics simulation, Computational Materials Science, 82 (2014) 17–25.
[12] J. Yu, Q. Zhang, R. Liu, Z. Yue, M. Tang, X. Li, Molecular dynamics simulation of crack propagation behaviors at the Ni/Ni3Al grain boundary, The Royal Society of Chemistry, 4 (2014) 32749-32754
[13] D. Huang, M. Wang, G. Lu, Continuum Fracture Analysis and Molecular Dynamic Study on Crack Initiation and Propagation in Nanofilms, Journal of Nanomaterials, 2014 (2014) 1-7.
[14] Y. Zhou, W. Yang, M. Hu, Z. Yang, The typical manners of dynamic crack propagation along the metal/ceramics interfaces: A molecular dynamics study, Computational Materials Science, 112 (2016) 27-33.
[15] L.V. Stepanova, Modeling of crack growth under mixed-mode loading by a molecular dynamics method and a linear fracture mechanics approach, in: Mechanics, Resource and Diagnostics of Materials and Structures American Institute of Physics, 2017, pp. 0400591-0400594.
[16] Y. Li, Q. Zhou, S. Zhang, P. Huang, K. Xu, F. Wang, T. Lu, On the role of weak interface in crack blunting process in nanoscale layered composites, Applied Surface Science, 433 (2018) 957-962.
[17] B. Zhang, L. Zhou, Y. Sun, W. He, Y. Chen, Molecular dynamics simulation of crack growth in pure titanium under uniaxial tension, Molecular Simulation, (2018) 1-10.
[18] B.J. Lee, M.I. Baskes, Second nearest-neighbor modified embedded-atom-method potential, Physical Review B, 62 (2000) 8564-8567.
[19] S. Plimpton, Fast Parallel Algorithms for Short–Range Molecular Dynamics, Journal of Computational Physics, 117 (1995) 1-42.
[20] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modelling and Simulation in Materials Science and Engineering, 18 (2010) 1-7.
[21] E.E. Gdoutos, Fracture Mechanics, 2 ed., Springer, The Netherlands, 2005.
[22] L. Zhang, H. Yan, G. Zhu, S. Liu, Z. Gan, Molecular dynamics simulation of aluminum nitride deposition: temperature and N : Al ratio effects, The Royal Society 5(2018) 1-11.
[23] S.F. Hwang, Y.-H. Li, Z.-H. Hong, Molecular dynamic simulation for Cu cluster deposition on Si substrate, Computational Materials Science, 56 (2012) 85-94.